Skip to main content
Skip to article control options
No AccessSpace Domain Awareness

Inferring Active Control Mode of the Hubble Space Telescope Using Unresolved Imagery

Published Online:https://doi.org/10.2514/1.G002223
Free first page

References

  • [1] Hall D., Africano J., Kervin P. and Birge B., “Non-Imaging Attitude and Shape Determination,” Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Curran Associates, Inc., Red Hook, NY, Sept. 2005, http://amostech.com/amos-technical-papers/proceedings/. Google Scholar

  • [2] Dunlap J., “Lightcurves and the Axis of Rotation of 433 Eros,” Icarus, Vol. 28, No. 1, 1976, pp. 69–78. doi:https://doi.org/10.1016/0019-1035(76)90087-7 CrossrefGoogle Scholar

  • [3] Hall D., Calef B., Knox K., Bolden M. and Kervin P., “Separating Attitude and Shape Effects for Non-Resolved Objects,” Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Curran Associates, Inc., Red Hook, NY, 2007, pp. 464–475, http://amostech.com/amos-technical-papers/proceedings/. Google Scholar

  • [4] Prussing J. E. and Conway B. A., Orbital Mechanics, 2nd ed., Oxford Univ. Press, New York, 2012. Google Scholar

  • [5] Holzinger M. J., Alfriend K. T., Wetterer C. J., Luu K. K., Sabol C. and Hamada K., “Photometric Attitude Estimation for Agile Space Objects with Shape Uncertainty,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 3, 2014, pp. 921–932. doi:https://doi.org/10.2514/1.58002 LinkGoogle Scholar

  • [6] Wetterer C. J. and Jah M. K., “Attitude Determination from Light Curves,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 5, Sept.–Oct. 2009, pp. 1648–1651. doi:https://doi.org/10.2514/1.44254 LinkGoogle Scholar

  • [7] Coder R. D., Holzinger M. J. and Linares R., “3DOF Estimation of Agile Space Objects Using Marginalized Particle Filters,” Journal of Guidance, Control, and Dynamics (submitted for publication). Google Scholar

  • [8] Abbot R. I. and Wallace T. P., “Decision Support in Space Situational Awareness,” Lincoln Laboratory Journal, Vol. 16, No. 2, 2007, p. 313. Google Scholar

  • [9] Chaudhary A., Payne T., Kinateder K., Dao P., Beecher E., Boone D., Elliott B. and Billing H., “Online Flagging of Anomalies and Adaptive Sequential Hypothesis Testing for Fine-feature Characterization of Geosynchronous Satellites,” Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Vol. 1, Curran Associates, Inc., Red Hook, NY, 2015, p. 20, http://amostech.com/amos-technical-papers/proceedings/. Google Scholar

  • [10] Kim S.-G., Crassidis J. L., Cheng Y., Fosbury A. M. and Junkins J. L., “Kalman Filtering for Relative Spacecraft Attitude and Position Estimation,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 1, 2007, pp. 133–143. LinkGoogle Scholar

  • [11] Segal S., Carmi A. and Gurfil P., “Stereovision-Based Estimation of Relative Dynamics Between Non-Cooperative Satellites: Theory and Experiments,” IEEE Transactions on Control Systems Technology, Vol. 22, No. 2, 2014, pp. 568–584. CrossrefGoogle Scholar

  • [12] Colina L., Bohlin R. and Castelli F., “Absolute Flux Calibrated Spectrum of Vega,” Space Telescope Science Inst. Rept.  CAL/SCS-008, Baltimore, MD, 1996. Google Scholar

  • [13] Hubble Science Archive,” European Space Agency, Madrid, Spain, March 2016. Google Scholar

  • [14] Visit Status Report for 11235,” Space Telescope Science Inst., Baltimore, MD, March 2016. Google Scholar

  • [15] Schaub H. and Junkins J. L., Analytical Mechanics of Space Systems, 3rd ed., AIAA, Reston, VA, 2014, pp. 86–111. doi:https://doi.org/10.2514/4.102400 Google Scholar

  • [16] Coder R. D., Holzinger M. J. and Jah M. K., “Inferring Space Object Active Control Mode Using Light Curve Inversion,” Journal of Guidance, Control, and Dynamics (submitted for publication). doi:https://doi.org/10.2514/1.G002224 Google Scholar