Skip to main content
Skip to article control options
No AccessSpace Domain Awareness

Space-Object Active Control Mode Inference Using Light Curve Inversion

Published Online:https://doi.org/10.2514/1.G002224

Several candidate methods for classifying an agile space-object active control mode are tested using simulated light curve data and a Rao–Blackwellized particle filter. The first measure to discriminate the space-object control mode is a measurement dissimilarity metric, defined as the time integral of the error between the estimated target space-object sensor boresight and the line-of-sight vector to each hypothesized subject. The second measure quantifies the “pointing quality” using the multivariate Gaussian mixture model analog to the Mahalanobis distance, which is computed using the estimated multivariate body angular velocity distributions. It is shown how additional information from the space-object shape model can be combined with radiometric first principles to establish a tracking error threshold between the target space object and the hypothesized subject. Finally, the body angular velocity estimates are used to compute the mass-specific rotational angular momentum and mass-specific rotational kinetic-energy analogs. These analogs are coupled with statistical inference techniques to classify the active control modes of agile space objects.

References

  • [1] Rumsfeld D. H., “Commission to Assess United States National Security Space Management and Organization,” Committee on Armed Services of the U.S. House of Representatives TR, Jan. 2001. Google Scholar

  • [2] Space Operations,” U.S. Dept. of Defense, Joint Chiefs of Staff Joint Publication 3-14, May 2013. Google Scholar

  • [3] Hall D., Calef B., Knox K., Bolden M. and Kervin P., “Separating Attitude and Shape Effects for Non-Resolved Objects,” Advanced Maui Optical and Space Surveillance Technologies Conference, Kihei, HI, 2007, pp. 464–475, http://amostech.com/amos-technical-papers/. Google Scholar

  • [4] Hall D. T., “Surface Material Characterization from Multi-Band Optical Observations,” Advanced Maui Optical and Space Surveillance Technologies Conference, 2010. Google Scholar

  • [5] Wetterer C. J. and Jah M. K., “Attitude Determination from Light Curves,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 5, Sept.–Oct. 2009, pp. 1648–1651. doi:https://doi.org/10.2514/1.44254 LinkGoogle Scholar

  • [6] Walker J. L., “Range-Doppler Imaging of Rotating Objects,” IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-16, No. 1, 1980, pp. 23–52. doi:https://doi.org/10.1109/TAES.1980.308875 IEARAX 0018-9251 CrossrefGoogle Scholar

  • [7] Abbot R. I. and Wallace T. P., “Decision Support in Space Situational Awareness,” Lincoln Laboratory Journal, Vol. 16, No. 2, 2007, p. 313. LLJOEJ 0896-4130 Google Scholar

  • [8] Chaudhary A. B., Payne T., Lucas K., Kinateder K. K., Dao P. and Murray-Krezan J., “Propagation of Bayesian Belief for Near-Real Time Statistical Assessment of Geosynchronous Satellite Status Based on Non-Resolved Photometry Data,” Advanced Maui Optical and Space Surveillance Technologies Conference, 2014. Google Scholar

  • [9] Chaudhary A., Payne T., Kinateder K., Dao P., Beecher E., Boone D., Elliott B. and Billing H., “On-Line Flagging of Anomalies and Adaptive Sequential Hypothesis Testing for Fine-Feature Characterization of Geosynchronous Satellites,” Advanced Maui Optical and Space Surveillance Technologies Conference, Vol. 1, 2015, p. 20. Google Scholar

  • [10] Gustafsson F., Adaptive Filtering and Change Detection, Wiley, New York, 2000, p. 17. doi:https://doi.org/10.1002/0470841613 Google Scholar

  • [11] Mehra R. K. and Peschon J., “An Innovations Approach to Fault Detection and Diagnosis in Dynamic Systems,” Automatica, Vol. 7, No. 5, 1971, pp. 637–640. doi:https://doi.org/10.1016/0005-1098(71)90028-8 ATCAA9 0005-1098 CrossrefGoogle Scholar

  • [12] Basseville M. and Nikiforov I. V., Detection of Abrupt Changes: Theory and Application, Prentice–Hall, Englewood Cliffs, NJ, 1993, pp. 181–185. Google Scholar

  • [13] Willsky A. S., “A Survey of Design Methods for Failure Detection in Dynamic Systems,” Automatica, Vol. 12, No. 6, 1976, pp. 601–611. doi:https://doi.org/10.1016/0005-1098(76)90041-8 ATCAA9 0005-1098 CrossrefGoogle Scholar

  • [14] Linares R., Jah M. K., Crassidis J. L. and Nebelecky C. K., “Space Object Shape Characterization and Tracking Using Light Curve and Angles Data,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 1, 2014, pp. 13–25. doi:https://doi.org/10.2514/1.62986 JGCODS 0731-5090 LinkGoogle Scholar

  • [15] North D. O., “An Analysis of the Factors Which Determine Signal/Noise Discrimination in Pulsed-Carrier Systems,” Proceedings of the IEEE, Vol. 51, No. 7, 1963, pp. 1016–1027. doi:https://doi.org/10.1109/PROC.1963.2383 IEEPAD 0018-9219 CrossrefGoogle Scholar

  • [16] Murphy T. S., Holzinger M. J. and Flewelling B., “Space Object Detection in Images Using Matched Filter Bank and Bayesian Update,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 3, 2017, pp. 497–509. JGCODS 0731-5090 LinkGoogle Scholar

  • [17] Coder R. D., Holzinger M. J. and Linares R., “3DOF Estimation of Agile Space Objects Using Marginalized Particle Filters,” Journal of Guidance, Control, and Dynamics (submitted). Google Scholar

  • [18] Thagard P., Mind: Introduction to Cognitive Science, MIT Press, Cambridge, MA, Vol. 4, 1996, pp. 3–22. Google Scholar

  • [19] Russell S. and Norvig P., Artificial Intelligence: A Modern Approach, 3rd ed., Prentice–Hall, Upper Saddle River, NJ, 2009, p. 377. Google Scholar

  • [20] Hall D., Africano J., Kervin P. and Birge B., “Non-Imaging Attitude and Shape Determination,” Advanced Maui Optical and Space Surveillance Technologies Conference, Sept. 2005. Google Scholar

  • [21] Dunlap J., “Lightcurves and the Axis of Rotation of 433 Eros,” Icarus, Vol. 28, No. 1, 1976, pp. 69–78. doi:https://doi.org/10.1016/0019-1035(76)90087-7 ICRSA5 0019-1035 CrossrefGoogle Scholar

  • [22] Holzinger M. J., Alfriend K. T., Wetterer C. J., Luu K. K., Sabol C. and Hamada K., “Photometric Attitude Estimation for Agile Space Objects with Shape Uncertainty,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 3, 2014, pp. 921–932. doi:https://doi.org/10.2514/1.58002 JGCODS 0731-5090 LinkGoogle Scholar

  • [23] Schaub H. and Junkins J. L., Analytical Mechanics of Space Systems, 3rd ed., AIAA, Reston, VA, 2014, pp. 143–199. doi:https://doi.org/10.2514/4.102400 Google Scholar

  • [24] Singer R., “Estimating Optimal Tracking Filter Performance for Manned Maneuvering Targets,” IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-6, No. 4, July 1970, pp. 473–483. doi:https://doi.org/10.1109/TAES.1970.310128 IEARAX 0018-9251 CrossrefGoogle Scholar

  • [25] Schon T., Gustafsson F. and Nordlund P.-J., “Marginalized Particle Filters for Mixed Linear/Nonlinear State-Space Models,” IEEE Transactions on Signal Processing, Vol. 53, No. 7, 2005, pp. 2279–2289. doi:https://doi.org/10.1109/TSP.2005.849151 ITPRED 1053-587X CrossrefGoogle Scholar

  • [26] Ristic B., Arulampalam S. and Gordon N., Beyond the Kalman Filter, Artech House, London, 2004, pp. 35–62. Google Scholar

  • [27] Douc R. and Cappé O., “Comparison of Resampling Schemes for Particle Filtering,” Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005. ISPA 2005, IEEE Publ., Piscataway, NJ, 2005, pp. 64–69. Google Scholar

  • [28] Lloyd S. P., “Least Squares Quantization in PCM,” IEEE Transactions on Information Theory, Vol. 28, No. 2, 1982, pp. 129–137. doi:https://doi.org/10.1109/TIT.1982.1056489 IETTAW 0018-9448 CrossrefGoogle Scholar

  • [29] Arthur D. and Vassilvitskii S., “k-Means++: The Advantages of Careful Seeding,” Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2007, pp. 1027–1035. Google Scholar

  • [30] Snow A. C., Worthy J. L., Boer A. D., Alexander L. J., Holzinger M. J. and Spencer D., “Optimization of CubeSat Constellations for Uncued Electrooptical Space Object Detection and Tracking,” Journal of Spacecraft and Rockets, Vol. 53, No. 3, 2016, pp. 401–419. doi:https://doi.org/10.2514/1.A33386 JSCRAG 0022-4650 LinkGoogle Scholar

  • [31] Li X. and King I., “Gaussian Mixture Distance for Information Retrieval,” International Joint Conference on Neural Networks, Vol. 4, IEEE Publ., Piscataway, NJ, 1999, pp. 2544–2549. doi:https://doi.org/10.1109/ijcnn.1999.833474 Google Scholar

  • [32] Prussing J. E. and Conway B. A., Orbital Mechanics, 2nd ed., Oxford Univ. Press, New York, 2012, Chap. 1. Google Scholar

  • [33] Wie B., Space Vehicle Dynamics and Control, AIAA Education Series, AIAA, Reston, VA, 1998, pp. 340–365. Google Scholar

  • [34] Feigelson E. D. and Babu G. J., Modern Statistical Methods for Astronomy: With R Applications, Cambridge Univ. Press, New York, 2012, pp. 48–52. doi:https://doi.org/10.1017/CBO9781139015653 CrossrefGoogle Scholar

  • [35] Johnson R. A. and Wichern D. W., Applied Multivariate Statistical Analysis, 6th ed., Pearson, London, 1992, pp. 210–234. Google Scholar

  • [36] Coder R. D. and Holzinger M. J., “Multi-Objective Design of Optical Systems for Space Situational Awareness,” Acta Astronautica, Vol. 128, Nov.–Dec. 2016, pp. 669–684. doi:https://doi.org/10.1016/j.actaastro.2016.07.008 AASTCF 0094-5765 CrossrefGoogle Scholar

  • [37] Schildknecht T., “Optical Astrometry of Fast Moving Objects Using CCD Detectors,” Geodätisch-Geophysikalische Arbeiten in der Schweiz, Vol. 49, 1994, pp. 181–196. Google Scholar

  • [38] Kitchin C. R., Telescopes and Techniques, Springer, New York, 2012, p. 33. doi:https://doi.org/10.1007/978-1-4471-0023-2 Google Scholar

  • [39] Calef B., Africano J., Birge B., Hall D. and Kervin P., “Photometric Signature Inversion,” Unconventional Imaging II, edited by Gamiz V. L., Idell P. S. and Strojnik M. S., Vol. 6307, SPIE, Bellingham, WA, 2006, Paper 63070E. doi:https://doi.org/10.1117/12.683015 CrossrefGoogle Scholar

  • [40] Smith W. J., Modern Optical Engineering, 4th ed., McGraw–Hill Education, New York, 2007, Chap. 5. Google Scholar

  • [41] Vallado D. A., Fundamentals of Astrodynamics and Applications, 3rd ed., Microcosm Press/Springer, New York, 2007, p. 296. Google Scholar

  • [42] Sabol C., Luu K. K., Kervin P., Nishimoto D., Hamada K. and Sydney P., “Recent Developments of the Raven Small Telescope Program,” AAS/AIAA Space Flight Mechanics Meeting, American Astronomical Soc. Paper  02-131, Washington, D.C., 2002, p. 397. Google Scholar

  • [43] Vallado D. A., Crawford P., Hujsak R. and Kelso T., “Revisiting Spacetrack Report# 3,” AIAA Paper  2006-6753, 2006. LinkGoogle Scholar

  • [44] Bretagnon P. and Francou G., “Planetary Theories in Rectangular and Spherical Variables-VSOP 87 Solutions,” Astronomy and Astrophysics, Vol. 202, Nos. 1–2, Aug. 1988, pp. 309–315. Google Scholar

  • [45] Cook R. L. and Torrance K. E., “A Reflectance Model for Computer Graphics,” Computer Graphics, Vol. 15, No. 3, Aug. 1981, pp. 307–316. doi:https://doi.org/10.1145/965161 CrossrefGoogle Scholar