Skip to main content
Skip to article control options
No AccessFull-Length Paper

Analysis of Petal Rotation Trajectory Characteristics

Published Online:https://doi.org/10.2514/1.G002571

In this study, the characteristics of petal rotation trajectories are explored in both the two-body problem and the circular restricted three-body problem (CRTBP). Petal rotation trajectories alternate long- and short-period nonresonant transfers between one or more gravity assist bodies to rotate the line of apsides relative to the central body. These petal rotation trajectories are typically computed using the patched-conic model, and they have been used in a number of different missions and mission concepts, including Cassini, JUICE, and planned Europa missions. Petal rotation trajectories are first analyzed here using the patched-conic model to quantify their characteristics and search for cases with fast rotation of the line of apsides. When petal rotation trajectories are computed in the CRTBP, they are unstable periodic orbits with corresponding stable and unstable manifolds. The characteristics of these orbits are explored from a dynamical systems perspective in the second phase of the study, and differences with patched-conic results are analyzed.

References

  • [1] Peralta F. and Flanagan S., “Cassini Interplanetary Trajectory Design,” Control Engineering Practice, Vol. 3, No. 11, 1995, pp. 1603–1610. doi:https://doi.org/10.1016/0967-0661(95)00171-P COEPEL 0967-0661 CrossrefGoogle Scholar

  • [2] Smith J. C., “Description of Three Candidate Cassini Satellite Tours,” Spaceflight Mechanics: Proceedings of the Spaceflight Mechanics Conference, edited by Middour J. W., Sackett L. L., D’Amario L. A. and Byrnes D. V., Vol. 99, Advances in the Astronautical Sciences, American Astronautical Soc., Univelt Inc., San Diego, CA, 1998, pp. 109–140. Google Scholar

  • [3] Wolf A. A. and Smith J. C., “Design of the Cassini Tour Trajectory in the Saturnian System,” Control Engineering Practice, Vol. 3, No. 11, 1995, pp. 1611–1619. doi:https://doi.org/10.1016/0967-0661(95)00172-Q COEPEL 0967-0661 CrossrefGoogle Scholar

  • [4] Buffington B., Strange N. J. and Smith J. C., “Overview of the Cassini Extended Mission Trajectory,” AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2008-6752, Aug. 2008. LinkGoogle Scholar

  • [5] Smith J. and Buffington B., “Overview of the Cassini Solstice Mission Trajectory,” AAS/AIAA Astrodynamics Conference, AAS Paper 09-351, Pittsburgh, PA, Aug. 2009. Google Scholar

  • [6] Buffington B., Campagnola S. and Petropoulos A. E., “Europa Multiple Flyby Trajectory Design,” AIAA/AAS Astrodynamics Specialists Conference, AIAA Paper 2012-5069, Aug. 2012. LinkGoogle Scholar

  • [7] Campagnola S., Buffington B. B. and Petropoulos A. E., “Jovian Tour Design for Orbiter and Lander Missions to Europa,” Acta Astronautica, Vol. 100, July–Aug. 2014, pp. 68–81. doi:https://doi.org/10.1016/j.actaastro.2014.02.005 AASTCF 0094-5765 CrossrefGoogle Scholar

  • [8] Buffington B., “Trajectory Design for the Europa Clipper Mission Concept,” 2014 AIAA/AAS Astrodynamics Specialists Conference, AIAA Paper 2014-4105, Aug. 2014. LinkGoogle Scholar

  • [9] Campagnola S., Boutonnet A., Martens W. and Masters A., “Mission Design for the Exploration of Neptune and Triton,” IEEE Aerospace and Electronics Systems Magazine, Vol. 30, No. 7, July 2015, pp. 6–17. IESMEA 0885-8985 CrossrefGoogle Scholar

  • [10] Masters A., Achilleos N., Agnor C., Campagnola S., Charnoz S., Christophe B., Coates A. J., Fletcher L. N., Jones G. H., Lamy L., Marzari F., Nettelmann N., Ruiz J., Ambrosi R., Andre N., Bhardwaj A., Fortney J. J., Hansen C. J., Helled R., Moragas-Klostermeyer G., Orton G., Ray L., Reynaud S., Sergis N., Srama R. and Volwerk M., “Neptune and Triton: Essential Pieces of the Solar System Puzzle,” Planetary and Space Science, Vol. 104, Part A, Dec. 2014, pp. 108–121. PLSSAE 0032-0633 CrossrefGoogle Scholar

  • [11] Boutonnet A. and Schoenmaekers J., “Mission Analysis for the JUICE Mission,” Space Flight Mechanics: Proceedings of the AAS/AIAA 22nd Space Flight Mechanics Meeting, edited by McAdams J. V., McKinley D. P., Berry M. M. and Jenkins K. L., Vol. 143, Advances in the Astronautical Sciences, American Astronautical Soc., Univelt Inc., San Diego, CA, 2012, pp. 1561–1578. Google Scholar

  • [12] Langevin Y., “Mission Design Issues for the European Orbiter of Laplace/EJSM: Callisto Flybys Sequence,” Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, edited by Rao A. V., Lovell T. A., Chan F. K. and Cangahuala L. A., Vol. 135, Univelt, Inc., Pittsburgh, PA, Aug. 2009, pp. 967–986. Google Scholar

  • [13] Russell R. P. and Strange N. J., “Cycler Trajectories in Planetary Moon Systems,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 1, Jan.–Feb. 2009, pp. 143–157. doi:https://doi.org/10.2514/1.36610 JGCODS 0731-5090 LinkGoogle Scholar

  • [14] Murray C. D. and Dermott S. F., Solar System Dynamics, Cambridge Univ. Press, Cambridge, U.K., 1999, pp. 421–428. Google Scholar

  • [15] Koon W. S., Lo M. W., Marsden J. E. and Ross S. D., “Resonance and Capture of Jupiter Comets,” Celestial Mechanics and Dynamical Astronomy, Vol. 81, Nos. 1–2, 2001, pp. 27–38. doi:https://doi.org/10.1023/A:1013398801813 CrossrefGoogle Scholar

  • [16] Barrabés E. and Gómez G., “Spatial p-q Resonant Orbits of the RTBP,” Celestial Mechanics and Dynamical Astronomy, Vol. 84, No. 4, Dec. 2002, pp. 387–407. doi:https://doi.org/10.1023/A:1021137127909 CrossrefGoogle Scholar

  • [17] Anderson R. L., “Approaching Moons from Resonance via Invariant Manifolds,” 22nd AAS/AIAA Space Flight Mechanics Meeting, AAS Paper 12-136, Charleston, SC, Jan.–Feb. 2012. Google Scholar

  • [18] Campagnola S. and Russell R., “Endgame Problem Part 1: V-Infinity-Leveraging Technique and the Leveraging Graph,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 2, 2010, pp. 463–475. doi:https://doi.org/10.2514/1.44258 JGCODS 0731-5090 LinkGoogle Scholar

  • [19] Anderson R. L. and Lo M. W., “A Dynamical Systems Analysis of Planetary Flybys and Approach: Ballistic Case,” The Journal of the Astronautical Sciences, Vol. 58, No. 2, April–June 2011, pp. 167–194. doi:https://doi.org/10.1007/BF03321164 CrossrefGoogle Scholar

  • [20] Marchand B. G., Howell K. C. and Wilson R. S., “Improved Corrections Process for Constrained Trajectory Design in the n-Body Problem,” Journal of Spacecraft and Rockets, Vol. 44, No. 4, July–Aug. 2007, pp. 884–897. doi:https://doi.org/10.2514/1.27205 JSCRAG 0022-4650 LinkGoogle Scholar

  • [21] Anderson R. L., Campagnola S. and Lantoine G., “Broad Search for Unstable Resonant Orbits in the Planar Circular Restricted Three-Body Problem,” Celestial Mechanics and Dynamical Astronomy, Vol. 124, No. 2, Feb. 2016, pp. 177–199. CrossrefGoogle Scholar

  • [22] Anderson R. L., “Low Thrust Trajectory Design for Resonant Flybys and Captures Using Invariant Manifolds,” Ph.D. Thesis, Univ. of Colorado at Boulder, Boulder, CO, 2005. Google Scholar

  • [23] Anderson R. L. and Lo M. W., “Role of Invariant Manifolds in Low-Thrust Trajectory Design,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 6, Nov.–Dec. 2009, pp. 1921–1930. doi:https://doi.org/10.2514/1.37516 JGCODS 0731-5090 LinkGoogle Scholar

  • [24] Anderson R. L. and Lo M. W., “Dynamical Systems Analysis of Planetary Flybys and Approach: Planar Europa Orbiter,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 6, Nov.–Dec. 2010, pp. 1899–1912. doi:https://doi.org/10.2514/1.45060 JGCODS 0731-5090 LinkGoogle Scholar

  • [25] Anderson R. L. and Lo M. W., “Flyby Design using Heteroclinic and Homoclinic Connections of Unstable Resonant Orbits,” Spaceflight Mechanics: Proceedings of the 21st AAS/AIAA Space Flight Mechanics Meeting, edited by Jah M. K., Guo Y., Bowes A. L. and Lai P. C., Vol. 140, Advances in the Astronautical Sciences, American Astronautical Soc., Univelt Inc., San Diego, CA, 2011, pp. 321–340. Google Scholar

  • [26] Anderson R. L., “Approaching Moons from Resonance via Invariant Manifolds,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 6, June 2015, pp. 1097–1109. doi:https://doi.org/10.2514/1.G000286 JGCODS 0731-5090 LinkGoogle Scholar

  • [27] Uphoff C., Roberts P. H. and Friedman L. D., “Orbit Design Concepts for Jupiter Orbiter Missions,” Journal of Spacecraft and Rockets, Vol. 13, No. 6, 1976, pp. 348–355. doi:https://doi.org/10.2514/3.57096 JSCRAG 0022-4650 LinkGoogle Scholar

  • [28] Strange N. J. and Sims J. A., “Methods for the Design of V-Infinity Leveraging Maneuvers,” Astrodynamics: Proceedings of the AAS/AIAA Astrodynamics Conference, edited by Spencer D. B., Seybold C. C., Misra A. K. and Lisowski R. J., Vol. 109, Advances in the Astronautical Sciences, American Astronautical Soc., Univelt Inc., San Diego, CA, 2001, pp. 1959–1976. Google Scholar

  • [29] Strange N. J., Campagnola S. and Russell R. P., “Leveraging Flybys of Low Mass Moons to Enable an Enceladus Orbiter,” Astrodynamics: Proceedings of the AAS/AIAA Astrodynamics Conference, edited by Rao A. V., Lovell T. A., Chan F. K. and Cangahuala L. A., Vol. 135, Part III, Advances in the Astronautical Sciences, American Astronautical Soc., Univelt Inc., San Diego, CA, 2009, pp. 2207–2225. Google Scholar

  • [30] Campagnola S., Strange N. and Russell R., “A Fast Tour Design Method Using Non-Tangent V-Infinity Leveraging Transfer,” Celestial Mechanics and Dynamical Astronomy, Vol. 108, No. 2, Oct. 2010, pp. 165–186. doi:https://doi.org/10.1007/s10569-010-9295-1 CrossrefGoogle Scholar

  • [31] Campagnola S., Skerritt P. and Russell R. P., “Flybys in the Planar, Circular, Restricted, Three-Body Problem,” Celestial Mechanics and Dynamical Astronomy, Vol. 113, No. 3, 2012, pp. 343–368. doi:https://doi.org/10.1007/s10569-012-9427-x CrossrefGoogle Scholar

  • [32] Strange N., Russell R. and Buffington B., “Mapping the V-Infinity Globe,” Astrodynamics: Proceedings of the AAS/AIAA Astrodynamics Conference, edited by Proulx R. J., Thomas J., Starchville F., Burns R. D. and Scheeres D. J., Vol. 129, Advances in the Astronautical Sciences, American Astronautical Soc., Univelt Inc., San Diego, CA, 2007, pp. 423–446. Google Scholar

  • [33] Szebehely V., Theory of Orbits: The Restricted Problem of Three Bodies, Academic Press, New York, 1967, Chap. 1. CrossrefGoogle Scholar

  • [34] Buffington B., Strange N. and Campagnola S., “Global Moon Coverage via Hyperbolic Flybys,” 23rd International Symposium on Space Flight Dynamics, Jet Propulsion Lab., Pasadena, CA, Oct.–Nov. 2012, http://issfd.org. Google Scholar

  • [35] Wilson R. S., “Derivation of Differential Correctors Used in GENESIS Mission Design,” Jet Propulsion Lab. IOM 312.I-03-002, Pasadena, CA, 2003. Google Scholar

  • [36] Marchand B., Howell K. C. and Wilson R., “An Improved Corrections Process for Constrained Trajectory Design in the n-Body Problem,” Journal of Spacecraft and Rockets, Vol. 44, No. 4, 2007, pp. 884–897. doi:https://doi.org/10.2514/1.27205 JSCRAG 0022-4650 LinkGoogle Scholar

  • [37] Parker J. S. and Anderson R. L., Low-Energy Lunar Trajectory Design, Vol. 12, 1st ed., JPL Deep Space Communications and Navigation Series, Wiley, Hoboken, NJ, June 2014, Chap. 2. CrossrefGoogle Scholar

  • [38] Howell K. C. and Breakwell J. V., “Three-Dimensional, Periodic, ‘Halo’ Orbits,” Celestial Mechanics, Vol. 32, No. 1, Jan. 1984, pp. 53–71. doi:https://doi.org/10.1007/BF01358403 CLMCAV 0008-8714 CrossrefGoogle Scholar

  • [39] Gómez G., Llibre J., Martínez R. and Simó C., Dynamics and Mission Design Near Libration Points Vol. I Fundamentals: The Case of Collinear Libration Points, Vol. 2, World Scientific Monograph Series in Mathematics, World Scientific, Hackensack, NJ, 2001, Chap. 2. CrossrefGoogle Scholar

  • [40] Dichmann D. J., Doedel E. J. and Paffenroth R. C., “The Computation of Periodic Solutions of the 3-Body Problem Using the Numerical Continuation Software AUTO,” International Conference on Libration Point Orbits and Applications, World Scientific Publishing Co., River Edge, NJ, June 2002. Google Scholar

  • [41] Campagnola S. and Russell R., “Endgame Problem Part 2: Multibody Technique and the Tisserand-Poincaré Graph,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 2, 2010, pp. 476–486. doi:https://doi.org/10.2514/1.44290 JGCODS 0731-5090 LinkGoogle Scholar

  • [42] Strömgren E., “Connaisance actuelle des orbites dans le problème des trois corps,” Bulletin Astronomique, Vol. 9, 1933, pp. 87–130. Google Scholar

  • [43] Lam T. and Whiffen G. J., “Exploration of Distant Retrograde Orbits Around Europa,” AAS/AIAA Space Flight Mechanics Meeting, AAS Paper 05-110, Copper Mountain, CO, Jan. 2005. Google Scholar

  • [44] Hénon M., “Numerical Exploration of the Restricted Problem. VI. Hill’s Case: Non-Periodic Orbits,” Astronomy & Astrophysics, Vol. 9, No. 1, 1970, pp. 24–36. Google Scholar

  • [45] Hénon M., “New Families of Periodic Orbits in Hill’s Problem of Three Bodies,” Celestial Mechanics and Dynamical Astronomy, Vol. 85, No. 3, 2003, pp. 223–246. doi:https://doi.org/10.1023/A:1022518422926 CrossrefGoogle Scholar