Skip to main content
Skip to article control options
No AccessFull-Length Paper

Transforming Civil Helicopters into Personal Aerial Vehicles: Modeling, Control, and Validation

Published Online:https://doi.org/10.2514/1.G002605

This paper presents the implementation of robust control strategies to augment an identified state-space model of a civil light helicopter. The aim of this study is to augment the helicopter model to achieve response types and handling qualities of a new category of aircraft called personal aerial vehicles, which can be flown even by inexperienced pilots. Two control methods are considered to augment the helicopter model, H and μ synthesis. Differences, advantages, and limitations of the implemented control architectures are highlighted with respect to the personal aerial vehicle reference dynamics in terms of robust stability, nominal performance, and handling qualities. Furthermore, results are presented of an experiment performed with the Max Planck Institute CyberMotion Simulator. The aim of the experiment is to assess the discrepancies between the two augmented systems and the personal aerial vehicle reference model. The experiment consists of piloted closed-loop control tasks performed by participants without any prior flight experience. The results show that the two implemented augmented systems allow inexperienced pilots to achieve workload and performance levels comparable to those defined for personal aerial vehicles.

References

  • [1] Nieuwenhuizen F. M., Jump M., Perfect P., White M., Padfield G., Floreano D., Schill F., Zufferey J., Fua P., Bouabdallah S., , et al., “myCopter: Enabling Technologies for Personal Aerial Transportation Systems,” 3rd International HELI World Conference 2011 “HELICOPTER Technologies and Operations” (HeliWorld 2011), Frankfurt, 2011. Google Scholar

  • [2] Jump M., Perfect P., Padfield G., White M., Floreano D., Fua P., Zufferey J.-C., Schill F., Siegwart R., Bouabdallah S., , et al., “myCopter: Enabling Technologies for Personal Air Transport Systems,” Proceedings of the Royal Aeronautical Society (RAeS) Rotorcraft Conference 2011: The Future of Rotorcraft: Enabling Capability Through the Application of Technology, Vol. 1, Curran Associates, Red Hook, NY, June 2011, pp. 169–195. Google Scholar

  • [3] Perfect P., Jump M. and White M. D., “Handling Qualities Requirements for Future Personal Aerial Vehicles,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 12, 2015, pp. 2386–2398. doi:https://doi.org/10.2514/1.G001073 JGCODS 0731-5090 LinkGoogle Scholar

  • [4] Postlethwaite I., Prempain E., Turkoglu E., Turner M. C., Ellis K. and Gubbels A. W., “Design and Flight Testing of Various H-Infinity Controllers for the Bell 205 Helicopter,” Control Engineering Practice, Vol. 13, No. 3, 2005, pp. 383–398. doi:https://doi.org/10.1016/j.conengprac.2003.12.008 COEPEL 0967-0661 CrossrefGoogle Scholar

  • [5] Theodore C. R., Malpica C. A., Blanken C. L., Tischler M. B., Lawrence B., Lindsey J. E. and Berger T., “Effect of Control System Augmentation on Handling Qualities and Task Performance in Good and Degraded Visual Environments,” Proceedings of the 70th Annual Forum of the American Helicopter Society, Vol. 1, Curran Associates, Red Hook, NY, May 2014, pp. 750–779. Google Scholar

  • [6] Geluardi S., Nieuwenhuizen F. M., Venrooij J., Pollini L. and Bülthoff H. H., “Frequency Domain System Identification of a Robinson R44 in Hover,” Journal of the American Helicopter Society (accepted for publication). JHESAK 0002-8711 Google Scholar

  • [7] Geluardi S., Nieuwenhuizen F. M., Pollini L. and Bülthoff H. H., “Augmented Systems for a Personal Aerial Vehicle Using a Civil Light Helicopter Model,” Proceedings of the 71st Annual Forum of the American Helicopter Society, Vol. 2, Curran Associates, Red Hook, NY, May 2015, pp. 1428–1436. Google Scholar

  • [8] Geluardi S., Nieuwenhuizen F. M., Pollini L. and Bülthoff H. H., “Frequency Domain System Identification of a Light Helicopter in Hover,” Proceedings of the 70th Annual Forum of the American Helicopter Society, Vol. 3, Curran Associates, Red Hook, NY, May 2014, pp. 1721–1731. Google Scholar

  • [9] Chen R. T. N. and Hindson W. S., “Influence of Higher-Order Dynamics on Helicopter Flight Control System Band-Width,” Journal of Guidance, Control, and Dynamics, Vol. 9, No. 2, 1986, pp. 190–197. doi:https://doi.org/10.2514/3.20089 JGCODS 0731-5090 LinkGoogle Scholar

  • [10] Tischler M. B. and Cauffman M. G., “Frequency Response Method for Rotorcraft System Identification: Flight Applications to BO 105 Coupled Rotor/Fuselage Dynamics,” Journal of the American Helicopter Society, Vol. 37, No. 3, 1992, pp. 3–17. doi:https://doi.org/10.4050/JAHS.37.3 JHESAK 0002-8711 CrossrefGoogle Scholar

  • [11] Greiser S. and Lantzsch R., “Equivalent Modelling and Suppression of Air Resonance for the ACT/FHS in Flight,” Proceedings of the 39th European Rotorcraft Forum, Vol. 1, Curran Associates, Red Hook, NY, 2013, pp. 376–388. Google Scholar

  • [12] Zhou K. and Doyle J. C., Essentials of Robust Control, Prentice–Hall, Upper Saddle River, NJ, Vol. 104, 1999, Chap. 14. Google Scholar

  • [13] Walker D. J. and Postlethwaite I., “Advanced Helicopter Flight Control Using Two-Degree-of-Freedom H-Infinity Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 19, No. 2, 1996, pp. 461–468. doi:https://doi.org/10.2514/3.21640 JGCODS 0731-5090 LinkGoogle Scholar

  • [14] Walker D. J., Turner M. C. and Gubbels A., “Practical Aspects of Implementing H-Infinity Controllers on a FBW Research Helicopter,” Proceedings of the RTO Applied Vehicle Technology Panel (AVT) Symposium, Vol. 1, No. 31, NATO Research and Technology Organization, Neuilly-sur-Seine, France, June 2001, pp. 1–7. Google Scholar

  • [15] Zhou K. and Doyle J. C., Essentials of Robust Control, Prentice–Hall, Upper Saddle River, NJ, Vol. 104, 1999, Chap. 10. Google Scholar

  • [16] Baskett B. J., “Aeronautical Design Standard Performance Specification Handling Qualities Requirements for Military Rotorcraft,” U.S. Army Aviation and Missile Command, Aviation Engineering Directorate, TR  ADS-33E-PRF, Redstone Arsenal, AL, 2000. Google Scholar

  • [17] Seher-Weiss S. and von Gruenhagen W., “Development of EC 135 Turbulence Models Via System Identification,” Aerospace Science and Technology, Vol. 23, No. 1, 2012, pp. 43–52. doi:https://doi.org/10.1016/j.ast.2011.09.008 CrossrefGoogle Scholar

  • [18] Bibel J. E. and Malyevac S. D., “Guidelines for the Selection of Weighting Functions for H-Infinity Control,” Defense Technical Information Center TR  AD-A251 781, Fort Belvoir, VA, 1992. Google Scholar

  • [19] Perfect P., Jump M. and White M. D., “Methods to Assess the Handling Qualities Requirements for Personal Aerial Vehicles,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 11, 2015, pp. 2161–2172. doi:https://doi.org/10.2514/1.G000862 JGCODS 0731-5090 LinkGoogle Scholar

  • [20] Kalyanmoy D., Multi-Objective Optimization Using Evolutionary Algorithms, Wiley, New York, 2001, Chap. 2. Google Scholar

  • [21] Boyd S. P. and Barratt C. H., Linear Controller Design: Limits of Performance, Prentice–Hall, Englewood Cliffs, NJ, 1991, Chap. 3. Google Scholar

  • [22] Zhou K. and Doyle J. C., Essentials of Robust Control, Prentice–Hall, Upper Saddle River, NJ, Vol. 104, 1999, Chap. 15. Google Scholar

  • [23] Geluardi S., “Identification and Augmentation of a Civil Light Helicopter: Transforming Helicopters into Personal Aerial Vehicles,” Ph.D. Thesis, Univ. of Pisa, Max Planck Inst. for Biological Cybernetics, Tübingen, Germany, 2016. Google Scholar

  • [24] Nieuwenhuizen F. M. and Bülthoff H. H., “The MPI CyberMotion Simulator: A Novel Research Platform to Investigate Human Control Behavior,” Journal of Computing Science and Engineering, Vol. 7, No. 2, 2013, pp. 122–131. doi:https://doi.org/10.5626/JCSE.2013.7.2.122 CrossrefGoogle Scholar

  • [25] Wiskemann C., Drop F., Pool D., van Paassen M., Mulder M. and Bülthoff H., “Subjective and Objective Metrics for the Evaluation of Motion Cueing Fidelity for a Roll-Lateral Reposition Maneuver,” Proceedings of the American Helicopter Society 70th Annual Forum, Montreal, Canada, 2014. Google Scholar

  • [26] Hart S. G. and Staveland L. E., “Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research,” Human Mental Workload, edited by Hancock P. A. and Meshkati N., North Holland Press, Amsterdam, The Netherlands, 1988, pp. 139–183. ADPSEK 0166-4115 Google Scholar

  • [27] Schuchardt B., “Towards Handling Qualities Evaluations of a Personal Aerial Vehicle in Ground-Based and In-Flight Simulation,” Proceedings of the 71st Annual Forum of the American Helicopter Society, Vol. 2, Curran Associates, Red Hook, NY, May 2015, pp. 1453–1464. Google Scholar