Approximate Estimators for Linear Systems with Additive Cauchy Noises
Abstract
The recently published optimal Cauchy estimator poses practical implementation challenges due to its time-growing complexity. Alternatively, addressing impulsive measurement and process noises, while using common estimation approaches, requires heuristic schemes. Approximate methods, such as particle and Gaussian-sum filters, were suggested to tackle the estimation problem in a heavy-tailed-noise environment when constraining the computational load. In this paper, the performances of a particle filter and a Gaussian-sum filter, designed for a linear system with specified Cauchy-noise parameters, are compared numerically to a Cauchy filter-based approximation showing the advantages of the latter.
References
[1] , The Black Swan: The Impact of the Highly Improbable, Random House, New York, 2007.
[2] , “Cauchy Drag Estimation for Low Earth Orbiters,” AAS/AIAA Space Flight Mechanics Meeting, Univelt, Inc., San Diego, CA, 2015, pp. 2731–2746.
[3] , Stochastic Processes, Estimation, and Control, Soc. for Industrial and Applied Mathematics, Philadelphia, PA, 2008, pp. 22–145.
[4] , “A New Approach to Linear Filtering and Prediction Problems,” Journal of Basic Engineering, Vol. 82, No. 1, 1960, pp. 35–45. doi:https://doi.org/10.1115/1.3662552 JBAEAI 0021-9223
[5] , “Robust Recursive Estimation in the Presence of Heavy-Tailed Observation Noise,” Annals of Statistics, Vol. 22, No. 2, 1994, pp. 1045–1080. doi:https://doi.org/10.1214/aos/1176325511
[6] , “Cauchy Estimation for Linear Scalar Systems,” IEEE Transactions on Automatic Control, Vol. 55, No. 6, 2010, pp. 1329–1342. doi:https://doi.org/10.1109/TAC.2010.2042009 IETAA9 0018-9286
[7] , “State Estimation for Linear Scalar Dynamic Systems with Additive Cauchy Noises: Characteristic Function Approach,” SIAM Journal on Control and Optimization, Vol. 50, No. 4, 2012, pp. 1971–1994. doi:https://doi.org/10.1137/110831362 SJCODC 0363-0129
[8] , “Multivariate Cauchy Estimator with Scalar Measurement and Process Noises,” SIAM Journal on Control and Optimization, Vol. 52, No. 2, 2014, pp. 1108–1141. doi:https://doi.org/10.1137/120891897 SJCODC 0363-0129
[9] , “Methods for Estimation and Control of Linear Systems Driven by Cauchy Noises,” Ph.D. Thesis, Univ. of California, Los Angeles, 2013.
[10] , “Stochastic Estimation for Two-State Linear Dynamic Systems with Additive Cauchy Noises,” IEEE Transactions on Automatic Control, Vol. 60, No. 12, 2015, pp. 3367–3372. doi:https://doi.org/10.1109/TAC.2015.2422478 IETAA9 0018-9286
[11] , “Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation,” IEE Proceedings-F: Radar and Signal Processing, Vol. 140, No. 2, 1993, pp. 107–113. doi:https://doi.org/10.1049/ip-f-2.1993.0015
[12] , “On Sequential Monte Carlo Sampling Methods for Bayesian Filtering,” Statistics and Computing, Vol. 10, No. 3, 2000, pp. 197–208. doi:https://doi.org/10.1023/A:1008935410038 STACE3 0960-3174
[13] , “Recursive Bayesian Estimation Using Gaussian Sums,” Automatica, Vol. 7, No. 4, 1971, pp. 465–479. doi:https://doi.org/10.1016/0005-1098(71)90097-5 ATCAA9 0005-1098
[14] , “Nonlinear Bayesian Estimation Using Gaussian Sum Approximations,” IEEE Transactions on Automatic Control, Vol. 17, No. 4, 1972, pp. 439–448. doi:https://doi.org/10.1109/TAC.1972.1100034 IETAA9 0018-9286
[15] , “State Estimation for Linear Systems with Additive Cauchy Noises: Optimal and Suboptimal Approaches,” Proceedings of European Control Conference, IEEE Publ., Piscataway, NJ, 2016, pp. 1434–1439. doi:https://doi.org/10.1109/ECC.2016.7810491
[16] , Sequential Monte-Carlo Methods in Practice, Springer–Verlag, New York, 2001.
[17] , “A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking,” IEEE Transactions on Signal Processing, Vol. 50, No. 2, 2002, pp. 174–188. doi:https://doi.org/10.1109/78.978374 ITPRED 1053-587X
[18] , “Resampling Methods for Particle Filtering: Classification, Implementation, and Strategies,” IEEE Signal Processing Magazine, Vol. 32, No. 3, 2015, pp. 70–86. doi:https://doi.org/10.1109/MSP.2014.2330626 ISPRE6 1053-5888
[19] , “Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models,” Journal of Computational and Graphical Statistics, Vol. 5, No. 1, 1996, pp. 1–25. doi:https://doi.org/10.2307/1390750 1061-8600
[20] , Theory of Approximation, Dover Publ., New York, 1992, Chap. 6.
[21] , “Gaussian Sum Reapproximation for Use in a Nonlinear Filter,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 2, 2015, pp. 292–303. doi:https://doi.org/10.2514/1.G000541 JGCODS 0731-5090
[22] , “The Two-Filter Formula for Smoothing and an Implementation of the Gaussian-Sum Smoother,” Annals of the Institute of Statistical Mathematics, Vol. 46, No. 4, 1994, pp. 605–623. doi:https://doi.org/10.1007/BF00773470 AISXAD 0020-3157
[23] , “Non-Gaussian Seasonal Adjustment,” Computers & Mathematics with Applications, Vol. 18, No. 6, 1989, pp. 503–514. doi:https://doi.org/10.1016/0898-1221(89)90103-X
[24] , “Cost-Function-Based Gaussian Mixture Reduction for Target Tracking,” Proceedings of the Sixth International Conference of Information Fusion, Vol. 2, IEEE Publ., Piscataway, NJ, 2003, pp. 1047–1054. doi:https://doi.org/10.1109/ICIF.2003.177354
[25] , Applied Optimization with MATLAB Programming, Wiley, New York, 2002, pp. 265–316.