No AccessFull-Length Paper

# Transfer Between Invariant Manifolds: From Impulse Transfer to Low-Thrust Transfer

Published Online:https://doi.org/10.2514/1.G002922

In this work, a new robust and fast method is developed to perform transfers that minimize fuel consumption between two invariant manifolds of periodic orbits in the circular restricted three-body problem. The method starts with an impulse transfer between two invariant manifolds to build an optimal control problem. This allows to choose an adequate fixed transfer time. Using the Pontryagin maximum principle, the resolution of the problem is formulated as that of finding the zero of a shooting function (indirect method). The algorithm couples different kinds of continuations (on cost, final state, and thrust) to improve robustness and to initialize the solver. The efficiency of the method is illustrated with numerical examples. Finally, the influence of the transfer time is studied numerically thanks to a continuation on this parameter, and it checks that, when transfer duration goes to zero, the control converges to the impulse transfer that it started with. It shows the robustness of the method and establishes a mathematical link between the two problems.

## References

• [1] Koon W. S., Lo M. W., Marsden J. E. and Ross J. E., Dynamical Systems, the Three-Body Problem, and Space Mission Design, Springer–Verlag, New York, 2006, Chap. 4. Google Scholar

• [2] Caillau J.-B. and Daoud B., “Minimum Time Control of the Restricted Three-Body Problem,” SIAM Journal on Control and Optimization, Vol. 50, No. 6, 2012, pp. 3178–3202. doi:https://doi.org/10.1137/110847299 SJCODC 0363-0129

• [3] Caillau J.-B., Daoud B. and Gergaud J., “Minimum Fuel Control of the Planar Circular Restricted Three-Body Problem,” Celestial Mechanics and Dynamical Astronomy, Vol. 114, Nos. 1–2, 2012, pp. 137–150. doi:https://doi.org/10.1007/s10569-012-9443-x

• [4] Zhang C., Topputo F., Bernelli-Zazzera F. and Zhao Y.-S., “Low-Thrust Minimum-Fuel Optimization in the Circular Restricted Three-Body Problem,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 8, 2015, pp. 1501–1510. doi:https://doi.org/10.2514/1.G001080 JGCODS 0731-5090

• [5] Epenoy R., “Optimal Long-Duration Low-Thrust Transfers Between Libration Point Orbits,” 63rd International Astronautical Congress, Paper  IAC-12.C1.5.9, Naples, Italy, Oct. 2012, pp. 1–12. Google Scholar

• [6] Epenoy R., Recent Advances in Celestial and Space Mechanics, Springer International, Cham, Switzerland, 2016, pp. 143–178.

• [7] Gómez G., Llibre J., Martnez R. and Simó C., Dynamics and Mission Design Near Libration Points. Vol. I, Vol. 2, World Scientific Monograph Series in Mathematics, World Scientific, River Edge, NJ, 2001. Google Scholar

• [8] Gómez G., Simó C., Llibre J. and Martnez R., Dynamics and Mission Design Near Libration Points. Vol. II, Vol. 3, World Scientific Monograph Series in Mathematics, World Scientific, River Edge, NJ, 2001. Google Scholar

• [9] Gómez G., Jorba A., Simó C. and Masdemont J., Dynamics and Mission Design Near Libration Points. Vol. IV, Vol. 5, World Scientific Monograph Series in Mathematics, World Scientific, River Edge, NJ, 2001. Google Scholar

• [10] Conley C. C., “Low Energy Transit Orbits in the Restricted Three-Body Problems,” SIAM Journal on Applied Mathematics, Vol. 16, No. 4, 1968, pp. 732–746. doi:https://doi.org/10.1137/0116060 SMJMAP 0036-1399

• [11] Koon W. S., Lo M. W., Marsden J. E. and Ross S. D., “Heteroclinic Connections Between Periodic Orbits and Resonance Transitions in Celestial Mechanics,” Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 10, No. 2, 2000, pp. 427–469. doi:https://doi.org/10.1063/1.166509

• [12] Gomez G. and Masdemont J., “Some Zero Cost Transfers Between Libration Point Orbits,” Point Orbits, AAS/AIAA Astrodynamics Specialist Conference, American Astronautical Soc. Paper  2000-177, Springfield, VA, 2000. Google Scholar

• [13] Zazzera F. B., Topputo F. and Massari M., “Assessment of Mission Design Including Utilisation of Libration Points and Weak Stability Boundaries,” European Space Agency, Advanced Concepts Team, TR 03-4103b, 2004, http://www.esa.int/act [retrieved 06 Nov. 2017]. Google Scholar

• [14] Belbruno E. A. and Miller J. K., “Sun-Perturbed Earth-to-Moon Transfers with Ballistic Capture,” Journal of Guidance Control Dynamics, Vol. 16, No. 4, Aug. 1993, pp. 770–775. doi:https://doi.org/10.2514/3.21079

• [15] Ross S. D., “The Interplanetary Transport Network,” American Scientist, Vol. 94, No. 3, 2006, pp. 230–237. doi:https://doi.org/10.1511/2006.59.994 AMSCAC 0003-0996

• [16] Mingotti G., Topputo F. and Bernelli-Zazzera F., “Low-Energy, Low-Thrust Transfers to the Moon,” Celestial Mechanics and Dynamical Astronomy, Vol. 105, Nos. 1–3, 2009, pp. 61–74.

• [17] Mingotti G., Topputo F. and Bernelli-Zazzera F., “Optimal Low-Thrust Invariant Manifold Trajectories via Attainable Sets,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 6, 2011, pp. 1644–1656. doi:https://doi.org/10.2514/1.52493 JGCODS 0731-5090

• [18] Mingotti G., Topputo F. and Bernelli-Zazzera F., “Combined Optimal Low-Thrust and Stable-Manifold Trajectories to the Earth-Moon Halo Orbits,” AIP Conference Proceedings, Vol. 886, No. 1, 2007, pp. 100–112. doi:https://doi.org/10.1063/1.2710047 APCPCS 0094-243X

• [19] Martin C. and Conway B. A., “Optimal Low-Thrust Trajectories Using Stable Manifolds,” Spacecraft Trajectory Optimization, edited by Conway B. A., Cambridge Univ. Press, Cambridge, England, 2010, pp. 238–262.

• [20] Betts J. T., Practical Methods for Optimal Control Using Nonlinear Programming, Soc. for Industrial and Applied Mathematics, Philadelphia, PA, 2001. Google Scholar

• [21] Trélat E., “Optimal Control and Applications to Aerospace: Some Results and Challenges,” Journal of Optimization Theory and Applications, Vol. 154, No. 3, 2012, pp. 713–758. doi:https://doi.org/10.1007/s10957-012-0050-5 JOTABN 0022-3239

• [22] Senent J., Ocampo C. and Capella A., “Low-Thrust Variable-Specific-Impulse Transfers and Guidance to Unstable Periodic Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 2, 2005, pp. 280–290. doi:https://doi.org/10.2514/1.6398 JGCODS 0731-5090

• [23] Ozimek M. T. and Howell K. C., “Low-Thrust Transfers in the Earth–Moon System, Including Applications to Libration Point Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 2, 2010, pp. 533–549. doi:https://doi.org/10.2514/1.43179 JGCODS 0731-5090

• [24] Ocampo C. and Rosborough G., Optimal Low-Thrust Transfers Between a Class of Restricted Three-Body Trajectories, 2nd ed., Vol. 85, Univelt, 1993, pp. 1547–1566. Google Scholar

• [25] Pontryagin L., Boltianski V., Gamkrélidzé R. and Michtchenko E., Théorie Mathématique Des Processus Optimaux, Escondido, CA, 1974. Google Scholar

• [26] Lee E. B. and Markus L., Foundations of Optimal Control Theory, 2nd ed., Krieger, Éditions de Mouscou (MIR), Moscow, 1986. Google Scholar

• [27] Trélat E., Contrôle Optimal, Mathématiques Concrètes, Vuibert, Paris, 2005. Google Scholar

• [28] Haberkorn T., “Transfert Orbital a Poussee Faible avec Minimisation de la Consommation: Resolution par Homotopie Differentielle,” Ph.D. Thesis, National Polytechnic Institute of Toulouse, Toulouse, France, Octobre 2004. Google Scholar

• [29] Jiang F., Baoyin H. and Li J., “Practical Techniques for Low-Thrust Trajectory Optimization with Homotopic Approach,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 1, 2012, pp. 245–258. doi:https://doi.org/10.2514/1.52476 JGCODS 0731-5090

• [30] Bertrand R. and Epenoy R., “New Smoothing Techniques for Solving Bang–Bang Optimal Control Problems—Numerical Results and Statistical Interpretation,” Optimal Control Applications and Methods, Vol. 23, No. 4, 2002, pp. 171–197. doi:https://doi.org/10.1002/(ISSN)1099-1514 OCAMD5 1099-1514

• [31] Gergaud J. and Haberkorn T., “Homotopy Method for Minimum Consumption Orbit Transfer Problem,” ESAIM: Control, Optimisation and Calculus of Variations, Vol. 12, No. 2, April 2006, pp. 294–310.

• [32] Cots O., Caillau J.-B. and Gergaud J., “Differential Pathfollowing for Regular Optimal Control Problems,” Optimization Methods and Software, Vol. 27, No. 2, 2012, pp. 177–196. doi:https://doi.org/10.1080/10556788.2011.593625 OMSOE2 1055-6788

• [33] Chupin M., Haberkorn T. and Trélat E., “Low-Thrust Lyapunov to Lyapunov and Halo to Halo Missions with $L2$-Minimization,” ESAIM: Mathematical Modelling and Numerical Analysis, ESAIM: M2AN 51, 2017, pp. 965–996. Google Scholar

• [34] Richardson D. L., “Analytic Construction of Periodic Orbits About the Collinear Points,” Celestial Mechanics, Vol. 22, No. 3, Oct. 1980, pp. 241–253.

• [35] Archambeau G., Augros P. and Trélat E., “Eight-Shaped Lissajous Orbits in the Earth–Moon System,” Mathematics in Action, Vol. 4, No. 1, 2011, pp. 1–23. doi:https://doi.org/10.5802/msia.5

• [36] Jorba À. and Masdemont J., “Dynamics in the Center Manifold of the Collinear Points of the Restricted Three Body Problem,” Physica D: Nonlinear Phenomena, Vol. 132, Nos. 1–2, July 1999, pp. 189–213. Google Scholar

• [37] Farquhar R. W. and Kamel A. A., “Quasi-Periodic Orbits About the Translunar Libration Point,” Celestial Mechanics, Vol. 7, No. 4, 1973, pp. 458–473. doi:https://doi.org/10.1007/BF01227511

• [38] Euler L., “De Motu Rectilineo Trium Corpörum se Mutuo Attrahentium,” Seria Secunda Tome XXV Commentationes Astronomicae, 1767, pp. 144–151. Google Scholar

• [39] Lagrange J.-L., Essai sur le Problème Des Trois Corps, Gauthier-Villars, France, 1772, pp. 272–282. Google Scholar

• [40] Szebehely V. G., Theory of Orbits—The Restricted Problem of Three Bodies, Academic Press, New York, 1967, p. 668. Google Scholar

• [41] Meyer K., Hall G. and Offin D., Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Applied Mathematical Sciences, Springer, New York, 2010. Google Scholar

• [42] Bonnard B., Faubourg L. and Trélat E., Mécanique Céleste et Contrôle des Véhicules Spatiaux, Vol. 51, Mathematics and Applications, Springer–Verlag, Berlin, 2006.

• [43] Chupin M., “Interplanetary Transfers with Low Consumption Using the Properties of the Restricted Three Body Problem,” Ph.D. Thesis, Université Pierre-et-Marie-Curie, Paris, Oct. 2016. Google Scholar

• [44] Jurdjevic V., Geometric Control Theory, Cambridge Studies in Advanced Mathematics, Cambridge Univ. Press, Cambridge, England, 1997. Google Scholar

• [45] Bonnard B. and Chyba M., Singular Trajectories and Their Role in Control Theory, Mathematics and Applications, Springer–Verlag, Berlin, 2003. Google Scholar

• [46] Watson L., “HOMPACK90: FORTRAN 90 Codes for Globally Convergent Homotopy Algorithms,” ACM Transactions on Mathematical Software, Vol. 23, No. 4, Dec. 1997, pp. 514–549. Google Scholar

• [47] Hairer E., Nørsett S. and Wanner G., Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series in Computational Mathematics, Springer, Berlin, 2008. Google Scholar