Skip to main content
Skip to article control options
No AccessFull-Length Paper

Achieving Overlap of Multiple, Arbitrarily Shaped Footprints Using Rendezvous Cones

Published Online:https://doi.org/10.2514/1.G002932

This paper addresses the problem of achieving the overlap of footprints of unmanned aerial vehicles used for search and surveillance or for establishing communication between remote areas. The need of the footprints to overlap is dictated by the requirement that no part of the sensed area is left uncovered in a search and surveillance operation or by the need to position a relay unmanned aerial vehicle in the overlap region of two distant unmanned aerial vehicles in order to enable them to communicate with each other. The problem is generalized by considering arbitrarily shaped footprints that can arise in various applications. The concept of a rendezvous cone, which invokes several notions from hyperbolic geometry and collision dynamics in the relative velocity framework, is used as the basis for the development of nonlinear analytical guidance laws that enable the overlap of footprints to the requisite depth. Simulations are presented that demonstrate the effectiveness of the developed guidance laws.

References

  • [1] Gupta L., Jain R. and Vaszkun G., “Survey of Important Issues in UAV Communication Networks,” IEEE Communications Surveys and Tutorials, Vol. 18, No. 2, 2016, pp. 1123–1152. doi:https://doi.org/10.1109/COMST.2015.2495297 CrossrefGoogle Scholar

  • [2] Zeng Y., Zhang R. and Lim T. J., “Wireless Communications with Unmanned Aerial Vehicles: Opportunities and Challenges,” IEEE Communications Magazine, Vol. 54, No. 5, May 2016, pp. 36–42. doi:https://doi.org/10.1109/MCOM.2016.7470933 ICOMD9 0163-6804 CrossrefGoogle Scholar

  • [3] DeAngelo M., Horn J. and Roeckel M., “Optimal Search Strategies for Unmanned Aerial Vehicles,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2012-4787, Aug. 2012. doi:https://doi.org/10.2514/6.2012-4787 LinkGoogle Scholar

  • [4] Bhandari S., Bettadapura A., Dadian O., Patel N., Dayton J. and Gan M., “Search and Rescue Using Unmanned Aerial Vehicles,” AIAA Infotech@Aerospace, AIAA Paper 2015-1458, Jan. 2015. doi:https://doi.org/10.2514/6.2015-1458 LinkGoogle Scholar

  • [5] Cau D., “Simulation of Search over Terrain with Unmanned Aerial Vehicles,” Infotech@Aerospace, AIAA Paper 2011-1442, March 2011. doi:https://doi.org/10.2514/6.2011-1442 LinkGoogle Scholar

  • [6] Pack D., York G., Sward R. and Cooper S., “Searching, Detecting, Monitoring Emergency Sites Using Multiple Unmanned Aerial Vehicles,” Infotech@Aerospace, AIAA Paper 2005-7031, Sept. 2005. doi:https://doi.org/10.2514/6.2005-7031 LinkGoogle Scholar

  • [7] Chakrabarty A., Morris R. A., Bouyssounous X. E. and Hunt R., “An Integrated System for Autonomous Search and Track with a small Unmanned Aerial Vehicle,” AIAA Information Systems—AIAA Infotech@Aerospace, AIAA Paper 2017-0671, Jan. 2017. doi:https://doi.org/10.2514/6.2017-0671 LinkGoogle Scholar

  • [8] Wood J. and Hedrick J. K., “Space Partitioning and Classification for Multi-Target Search and Tracking by Heterogeneous Unmanned Aerial System Teams,” Infotech@Aerospace, AIAA Paper 2011-1443, March 2011. doi:https://doi.org/10.2514/6.2011-1443 LinkGoogle Scholar

  • [9] Aksaray D., Yazicioglu A. Y., Feron E. and Mavris D. N., “Message-Passing Strategy for Decentralized Connectivity Maintenance in Multiagent Surveillance,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 3, March 2016, pp. 542–555. doi:https://doi.org/10.2514/1.G001230 JGCODS 0731-5090 LinkGoogle Scholar

  • [10] Frew E. W., Lawrence D. A. and Morris S., “Coordinated Standoff Tracking of Moving Targets Using Lyapunov Guidance Vector Fields,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 2, March–April 2008, pp. 290–306. doi:https://doi.org/10.2514/1.30507 LinkGoogle Scholar

  • [11] Geiger B. R., Horn J. F., Sinsley G. L., Ross J. A., Long L. N. and Niessner A. F., “Flight Testing a Real-Time Direct Collocation Path Planner,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, Nov.–Dec. 2008, pp. 1575–1586. doi:https://doi.org/10.2514/1.36533 LinkGoogle Scholar

  • [12] Horn J. F., Schmidt E. M., Geiger B. R. and DeAngelo M. P., “Neural Network-Based Trajectory Optimization for Unmanned Aerial Vehicles,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 2, March–April 2012, pp. 548–562. doi:https://doi.org/10.2514/1.53889 LinkGoogle Scholar

  • [13] Hosseini S. and Mesbahi M., “Energy-Aware Aerial Surveillance for a Long-Endurance Solar-Powered Unmanned Aerial Vehicles,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 9, Sept. 2016, pp. 1980–1993. doi:https://doi.org/10.2514/1.G001737 JGCODS 0731-5090 LinkGoogle Scholar

  • [14] Doitsidis L., Weiss S., Rensaglia A., Achtelik M. W., Kosmatopoulos E., Siegwart R. and Scaramuzza D., “Optimal Surveillance Coverage for Teams of Micro Aerial Vehicles in GPS-Denied Environments Using Onboard Vision,” Autonomous Robots, Vol. 33, No. 1, 2012, pp. 173–188. doi:https://doi.org/10.1007/s10514-012-9292-1 CrossrefGoogle Scholar

  • [15] Ahmadzadeh A., Keller J., Pappas G. J., Jadbabaie A. and Kumar V., “Multi-UAV Cooperative Surveillance with Spatio-Temporal Specifications,” 45th IEEE Conference on Decision and Control, IEEE Publ., Piscataway, NJ, Dec. 2006, pp. 5293–5298. doi:https://doi.org/10.1109/CDC.2006.377157 Google Scholar

  • [16] Zhai C., He F., Hong Y., Wang L. and Yao Y., “Coverage-Based Interception Algorithm of Multiple Interceptors Against the Target Involving Decoys,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 7, July 2016, pp. 1647–1653. doi:https://doi.org/10.2514/1.G001535 LinkGoogle Scholar

  • [17] Renzaglia A., Doitsidis L., Chatzichristofis S. A., Martinelli A. and Kosmatopoulos E. B., “Distributed Multi-Robot Coverage Using Micro Aerial Vehicles,” Mediterranean Conference on Control and Automation, IEEE Publ., Piscataway, NJ, June 2013, pp. 963–968. doi:https://doi.org/10.1109/MED.2013.6608838 Google Scholar

  • [18] Li Y., Chen H., Er M. J. and Wang X., “Coverage Path Planning for UAVs Based on Enhanced Exact Cellular Decomposition Method,” Mechatronics, Vol. 21, No. 5, Aug. 2011, pp. 876–885. doi:https://doi.org/10.1016/j.mechatronics.2010.10.009 MECHER 0957-4158 CrossrefGoogle Scholar

  • [19] Paull L., Thibault C., Nagaty A., Seto M. and Li H., “Sensor-Driven Area Coverage for an Autonomous Fixed-Wing Unmanned Aerial Vehicle,” IEEE Transactions on Cybernetics, Vol. 44, No. 9, Sept. 2014, pp. 1605–1618. doi:https://doi.org/10.1109/TCYB.2013.2290975 CrossrefGoogle Scholar

  • [20] Marier J., Rabbath C. A. and Lechevin N., “Health-Aware Coverage Control with Application to a Team of Small UAVs,” IEEE Transactions on Control Systems Technology, Vol. 21, No. 5, Sept. 2013, pp.1719–1730. doi:https://doi.org/10.1109/TCST.2012.2208113 IETTE2 1063-6536 CrossrefGoogle Scholar

  • [21] Avellar G. S. C., Pereira G. A. S., Pimenta L. C. A. and Iscold P., “Multi-UAV Routing for Area Coverage and Remote Sensing with Minimum Time,” Sensors, Vol. 15, No. 12, 2015, pp. 27783–27803. doi:https://doi.org/10.3390/s151127783 SNSRES 0746-9462 CrossrefGoogle Scholar

  • [22] Galceran E. and Carreras M., “A Survey on Coverage Path Planning for Robotics,” Robotics and Autonomous Systems, Vol. 61, No. 12, Dec. 2013, pp. 1258–1276. doi:https://doi.org/10.1016/j.robot.2013.09.004 RASOEJ 0921-8890 CrossrefGoogle Scholar

  • [23] Tsourdos A., White B. and Shanmugavel M., Cooperative Path Planning of Unmanned Aerial Vehicles, Wiley, Hoboken, NJ, Nov. 2010. AbstractGoogle Scholar

  • [24] Veen B. D. and Buckley K. M., “Beamforming: A Versatile Approach to Spatial Filtering,” IEEE ASSP Magazine, Vol. 5, No. 2, April 1988, pp. 4–24. Google Scholar

  • [25] Rees C., “ADCOR MAGnet Systems Announces New Smart Antenna for Drones,” Unmanned Systems News [online journal], July 2016, https://doi.org/http://www.unmannedsystemstechnology.com/2016/07/adcor-magnet-systems-announces-new-smart-antenna-for-drones/ [retrieved 2018]. Google Scholar

  • [26] Ma H. and Liu Y., “On Coverage Problems of Directional Sensing Networks,” International Conference on Mobile Ad-Hoc and Sensor Networks, Springer, New York, 2005, pp. 721–731. Google Scholar

  • [27] Guvensan M. A. and Yavuz A. G., “On Coverage Issues in Directional Sensor Networks: A Survey,” Ad Hoc Networks, Vol. 9, No. 7, 2011, pp. 1238–1255. doi:https://doi.org/10.1016/j.adhoc.2011.02.003 CrossrefGoogle Scholar

  • [28] Panagou D., Stipanovic D. M. and Voulgaris P. G., “Vision-Based Dynamic Coverage Control for Nonholonomic Agents,” 53rd IEEE Annual Conference on Decision and Control, IEEE Publ., Piscataway, NJ, 2014, pp. 2198–2203. Google Scholar

  • [29] Panagou D., Stipanovic D. M. and Voulgaris P. G., “Distributed Dynamic Coverage and Avoidance Control Under Anisotropic Sensing,” IEEE Transactions on Control of Network Systems, Vol. 4, No. 4, Dec. 2017, pp. 850–862. doi:https://doi.org/10.1109/TCNS.2016.2576403 CrossrefGoogle Scholar

  • [30] Stergiopoulos Y. and Tzes A., “Autonomous Deployment of Heterogeneous Mobile Agents with Arbitrarily Anisotropic Sensing Patterns,” Proceedings of Mediterranean Conference on Control and Automation (MED), IEEE Publ., Piscataway, NJ, July 2012, pp. 1585–1590. doi:https://doi.org/10.1109/MED.2012.6265865 Google Scholar

  • [31] Stergiopoulos Y. and Tzes A., “Cooperative Positioning/Orientation Control of Mobile Heterogeneous Anisotropic Sensor Networks for Area Coverage,” IEEE International Conference on Robotics and Automation (ICRA), IEEE Publ., Piscataway, NJ, May–June 2014, pp. 1106–1111. doi:https://doi.org/10.1109/ICRA.2014.6906992 Google Scholar

  • [32] Isler V., Kannan S. and Khanna S., “Randomized Pursuit-Evasion in a Polygonal Environment,” IEEE Transactions on Robotics, Vol. 21, No. 5, 2005, pp. 875–884. doi:https://doi.org/10.1109/TRO.2005.851373 ITREAE 1552-3098 CrossrefGoogle Scholar

  • [33] Gerkey B. P., Thrun S. and Gordon G., “Visibility-Based Pursuit-Evasion with Limited Field of View,” International Journal of Robotics Research, Vol. 25, No. 4, 2006, pp. 299–315. doi:https://doi.org/10.1177/0278364906065023 IJRREL 0278-3649 CrossrefGoogle Scholar

  • [34] Chung T. H., Hollinger G. A. and Isler V., “Search and Pursuit-Evasion in Mobile Robotics,” Autonomous Robots, Vol. 31, No. 4, 2011, pp. 299–316. doi:https://doi.org/10.1007/s10514-011-9241-4 CrossrefGoogle Scholar

  • [35] Palacios-Gasós J. M., Talebpour Z., Montijano E., Sagüés C. and Martinoli A., “Optimal Path Planning and Coverage Control for Multi-Robot Persistent Coverage in Environments with Obstacles,” International Conference on Robotics and Automation, IEEE Publ., Piscataway, NJ, 2017, pp. 1321–1327. Google Scholar

  • [36] Hussein I. and Stipanovic D. M., “Effective Coverage Control for Mobile Sensor Networks with Guaranteed Collision Avoidance,” IEEE Transactions on Control Systems Technology, Vol. 15, No. 4, 2007, pp. 642–657. doi:https://doi.org/10.1109/TCST.2007.899155 IETTE2 1063-6536 CrossrefGoogle Scholar

  • [37] Kantaros Y. and Zavlanos M. M., “Distributed Communication-Aware Coverage Control by Mobile Sensor Networks,” Automatica, Vol. 63, Jan. 2016, pp. 209–220. doi:https://doi.org/10.1016/j.automatica.2015.10.035 ATCAA9 0005-1098 CrossrefGoogle Scholar

  • [38] Jiang W. and Zefran M., “Coverage Control with Information Aggregation,” 52nd IEEE Conference on Decision and Control, IEEE Publ., Piscataway, NJ, 2013, pp. 5421–5426. Google Scholar

  • [39] Li W. and Cassandras C. G., “Distributed Cooperative Coverage Control of Sensor Networks,” 44th IEEE Conference on Decision and Control and European Control Conference, IEEE Publ., Piscataway, NJ, 2005, pp. 2542–2547. Google Scholar

  • [40] Zavlanos M. M., Egerstedt M. B. and Pappas G. J., “Graph Theoretic Connectivity Control of Mobile Robot Networks,” Proceedings of the IEEE, Vol. 99, No. 9, 2011, pp. 1525–1540. doi:https://doi.org/10.1109/JPROC.2011.2157884 IEEPAD 0018-9219 CrossrefGoogle Scholar

  • [41] Cortes J., Martinez S. and Bullo F., “Robust Rendezvous for Mobile Autonomous Agents via Proximity Graphs in Arbitrary Dimensions,” IEEE Transactions on Automatic Control, Vol. 51, No. 8, Aug. 2006, pp. 1289–1298. doi:https://doi.org/10.1109/TAC.2006.878713 IETAA9 0018-9286 CrossrefGoogle Scholar

  • [42] Dimarogonas D. V. and Kyriakopoulos K. J., “On the Rendezvous Problem for Multiple Nonholonomic Agents,” IEEE Transactions on Automatic Control, Vol. 52, No. 5, May 2007, pp. 916–922. doi:https://doi.org/10.1109/TAC.2007.895897 IETAA9 0018-9286 CrossrefGoogle Scholar

  • [43] Yazicioglu A. Y., Egerstedt M. and Shamma J., “A Game Theoretic Approach to Distributed Coverage of Graphs by Heterogeneous Mobile Agents,” IFAC Workshop on Distributed Estimation and Control in Networked Systems, Elsevier, Amsterdam, The Netherlands, Sept. 2013, pp. 309–315. doi:https://doi.org/10.3182/20130925-2-DE-4044.00034 Google Scholar

  • [44] Chakravarthy A. and Ghose D., “Obstacle Avoidance in a Dynamic Environment: A Collision Cone Approach,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 28, No. 5, Sept. 1998, pp. 562–574. doi:https://doi.org/10.1109/3468.709600 ISYMAW 0018-9472 CrossrefGoogle Scholar

  • [45] Chakravarthy A. and Ghose D., “Collision Cones for Quadric Surfaces,” IEEE Transactions on Robotics, Vol. 27, No. 6, Dec. 2011, pp. 1159–1166. doi:https://doi.org/10.1109/TRO.2011.2159413 ITREAE 1552-3098 CrossrefGoogle Scholar

  • [46] Chakravarthy A. and Ghose D., “Generalization of the Collision Cone Approach to Motion Safety in 3-D Environments,” Autonomous Robots, Vol. 32, No. 3, April 2012, pp. 243–266. doi:https://doi.org/10.1007/s10514-011-9270-z CrossrefGoogle Scholar

  • [47] Chakravarthy A. and Ghose D., “Guidance for Precision 3-Dimensional Maneuvers Through Orifices Using Safe-Passage Cones,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 6, June 2016, pp. 1325–1341. doi:https://doi.org/10.2514/1.G001546 LinkGoogle Scholar

  • [48] Lin C., Modern Navigation, Guidance and Control Processing, Prentice–Hall, Englewood Cliffs, NJ, 1991, pp. 34–35. Google Scholar

  • [49] Kumar A., Sindhwani V. and Kambadur P., “Fast Conical Hull Algorithms for Near-Separable Non-Negative Matrix Factorization,” International Conference on Machine Learning, Vol. 28, Microtome Publ., Brookline, MA, 2013, pp. 231–239. Google Scholar