Skip to main content
No AccessEngineering Note

Fully Coupled Reaction Wheel Static and Dynamic Imbalance for Spacecraft Jitter Modeling

Published Online:https://doi.org/10.2514/1.G003277
Free first page

References

  • [1] Dewell L., Pedreiro N., Blaurock C., Liu K.-C., Alexander J. and Levine M., “Precision Telescope Pointing and Spacecraft Vibration Isolation for the Terrestrial Planet Finder Coronagraph,” Proceedings Volume 5899, UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts II, Aug. 2005, Paper 589902. doi:https://doi.org/10.1117/12.618939 Google Scholar

  • [2] Rizzo M., Rinehart S., Alcorn J., Barry R., Benford D., Fixsen D. and et al., “Building an Interferometer at the Edge of Space: Pointing and Phase Control System for BETTII,” Proceedings Volume 9143, Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, Aug. 2014, Paper 91433H. doi:https://doi.org/10.1117/12.2055016 Google Scholar

  • [3] Markley F. L. and Crassidis J. L., Fundamentals of Spacecraft Attitude Determination and Control, Space Technology Library, Springer, New York, 2014, pp. 148–152. doi:https://doi.org/10.1007/978-1-4939-0802-8 CrossrefGoogle Scholar

  • [4] Park J., Palazzolo A. and Beach R., “MIMO Active Vibration Control of Magnetically Suspended Flywheels for Satellite IPAC Service,” Journal of Dynamic Systems, Measurement, and Control, Vol. 130, No. 4, 2008, Paper 041005. doi:https://doi.org/10.1115/1.2936846 JDSMAA 0022-0434 CrossrefGoogle Scholar

  • [5] Park J. and Palazzolo A., “Magnetically Suspended VSCMGs for Simultaneous Attitude Control and Power Transfer IPAC Service,” Journal of Dynamic Systems, Measurement, and Control, Vol. 132, No. 5, 2010, Paper 051001. doi:https://doi.org/10.1115/1.4002105 JDSMAA 0022-0434 CrossrefGoogle Scholar

  • [6] Masterson R., Miller D. and Grogan R., “Development of Empirical and Analytical Reaction Wheel Disturbance Models,” AIAA Structures, Structural Dynamics, and Materials Conference, AIAA Paper 1999-1204, 1999. doi:https://doi.org/10.2514/6.1999-1204 LinkGoogle Scholar

  • [7] Masterson R., Miller D. and Grogan R., “Development and Validation of Reaction Wheel Disturbance Models: Empirical Model,” Journal of Sound and Vibration, Vol. 249, No. 3, 2002, pp. 575–598. doi:https://doi.org/10.1006/jsvi.2001.3868 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [8] Liu L., “Jitter and Basic Requirements of the Reaction Wheel Assembly in the Attitude Control System,” TN, Massachusetts Inst. of Technology, Cambridge, MA, Aug. 2007, http://web.mit.edu/lululiu/Public/TESS%20things/acs_analysis.pdf. Google Scholar

  • [9] Gutierrez H., “Performance Assessment and Enhancement of Precision Controlled Structures During Conceptual Design,” Ph.D. Dissertation, Dept. of Aeronautics and Astronautics, Massachusetts Inst. of Technology, Cambridge, MA, 1999. Google Scholar

  • [10] Liu K.-C., Maghami P. and Blaurock C., “Reaction Wheel Disturbance Modeling, Jitter Analysis, and Validation Tests for Solar Dynamics Observatory,” AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA Paper 2008-7232, 2008. doi:https://doi.org/10.2514/6.2008-7232 LinkGoogle Scholar

  • [11] Miller S., Kirchman P. and Sudey J., “Reaction Wheel Operational Impacts on the GOES-N Jitter Environment,” AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA Paper 2007-6736, 2007. doi:https://doi.org/10.2514/6.2007-6736 LinkGoogle Scholar

  • [12] Kim D.-K., “Micro-Vibration Model and Parameter Estimation Method of a Reaction Wheel Assembly,” Journal of Sound and Vibration, Vol. 333, No. 18, 2014, pp. 4214–4231. doi:https://doi.org/10.1016/j.jsv.2014.04.032 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [13] Zhang Y. and Zhang J., “Disturbance Characteristics Analysis of CMG Due to Imbalances and Installation Errors,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 50, No. 2, 2014, pp. 1017–1026. doi:https://doi.org/10.1109/TAES.2013.120543 IEARAX 0018-9251 CrossrefGoogle Scholar

  • [14] Schaub H. and Junkins J. L., Analytical Mechanics of Space Systems, AIAA Education Series, AIAA, Reston, VA, 2014, Chaps. 4, 8. Google Scholar

  • [15] Allard C., Schaub H. and Piggott S., “General Hinged Solar Panel Dynamics Approximating First-Order Spacecraft Flexing,” AAS Guidance and Control Conference, AAS Paper  16-156, Breckenridge, CO, Feb. 2016. Google Scholar

  • [16] Allard C., Diaz-Ramos M. F. and Schaub H., “Spacecraft Dynamics Integrating Hinged Solar Panels and Lumped-Mass Fuel Slosh Model,” AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2016-5684, 2016. doi:https://doi.org/10.2514/6.2016-5684 LinkGoogle Scholar

  • [17] Kane T. R. and Levinson D. A., Dynamics: Theory and Applications, McGraw–Hill, New York, 1985, Chaps. 1–2. Google Scholar

  • [18] Shuster M. D., “A Survey of Attitude Representations,” Journal of the Astronautical Sciences, Vol. 41, No. 4, 1993, pp. 439–517. JALSA6 0021-9142 Google Scholar