Skip to main content
No AccessEngineering Note

Hamilton’s Principle for Variable-Mass Systems

Published Online:https://doi.org/10.2514/1.G003340
Free first page

References

  • [1] Papastavridis J. G., Analytical Mechanics, Oxford Univ. Press, New York, 2002, pp. 301–323, 386, 418–427, 461–469, 877, 935–937, 948–957, 961, 972, 1062–1069. Google Scholar

  • [2] Hurtado J. E., “Analytical Dynamics of Variable-Mass Systems,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 3, 2018, pp. 701–709. doi:https://doi.org/10.2514/1.G002917 JGCODS 0731-5090 LinkGoogle Scholar

  • [3] Schaub H. and Junkins J. L., Analytical Mechanics of Space Systems, AIAA, Reston, VA, 2003, pp. 251–254. LinkGoogle Scholar

  • [4] Rosenberg R. M., Analytical Dynamics of Discrete Systems, Plenum, New York, 1977, pp. 139–146, 167–174. CrossrefGoogle Scholar

  • [5] McIver D. B., “Hamilton’s Principle for Systems of Changing Mass,” Journal of Engineering Mathematics, Vol. 7, No. 3, 1973, pp. 249–261. doi:https://doi.org/10.1007/BF01535286 JLEMAU 0022-0833 CrossrefGoogle Scholar

  • [6] Casetta L. and Pesce C. P., “The Generalized Hamilton’s Principle for a Non-Material Volume,” Acta Mechanica, Vol. 224, No. 4, 2013, pp. 919–924. doi:https://doi.org/10.1007/s00707-012-0807-9 AMHCAP 0001-5970 CrossrefGoogle Scholar

  • [7] Irschik H. and Holl H. J., “The Equations of Lagrange Written for a Non-Material Volume,” Acta Mechanica, Vol. 153, Nos. 3–4, 2002, pp. 231–248. doi:https://doi.org/10.1007/BF01177454 AMHCAP 0001-5970 CrossrefGoogle Scholar

  • [8] Zhao R. and Yu K., “Hamilton’s Law of Variable Mass System and Time Finite Element Formulations for Time-Varying Structures Based on the Law,” International Journal for Numerical Methods in Engineering, Vol. 99, No. 10, 2014, pp. 711–736. doi:https://doi.org/10.1002/nme.v99.10 IJNMBH 0029-5981 CrossrefGoogle Scholar

  • [9] Guttner W. C. and Pesce C. P., “On Hamilton’s Principle for Discrete Systems of Variable Mass and the Corresponding Lagrange’s Equations,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 39, No. 6, 2017, pp. 1969–1976. doi:https://doi.org/10.1007/s40430-016-0625-4 CrossrefGoogle Scholar

  • [10] Cayley A., “On a Class of Dynamical Problems,” Proceedings of the Royal Society of London, Vol. 8, Jan. 1856, pp. 506–511. doi:https://doi.org/10.1098/rspl.1856.0133 PRSLAZ 0370-1662 CrossrefGoogle Scholar

  • [11] Cveticanin L., “Conservation Laws in Systems with Variable Mass,” Journal of Applied Mechanics, Vol. 60, No. 4, 1993, pp. 954–958. doi:https://doi.org/10.1115/1.2901007 JAMCAV 0021-8936 CrossrefGoogle Scholar

  • [12] Pesce C. P., “The Application of Lagrange Equations to Mechanical Systems with Mass Explicitly Dependent on Position,” Journal of Applied Mechanics, Vol. 70, No. 5, 2003, pp. 751–756. doi:https://doi.org/10.1115/1.1601249 JAMCAV 0021-8936 CrossrefGoogle Scholar

  • [13] Meirovitch L., Methods of Analytical Dynamics, McGraw–Hill, New York, 1970, pp. 59–64, 68–69. Google Scholar

  • [14] Frederick D. and Chang T. S., Continuum Mechanics, Scientific Publishers, Cambridge, MA, 1965, pp. 3–28, Chap. 1. Google Scholar

  • [15] Goldstein H., Classical Mechanics, Addison-Wesley, Reading, MA, 1959, pp. 350–355. Google Scholar

  • [16] Junkins J. L. and Kim Y., Introduction to Dynamics and Control of Flexible Structures, AIAA, Washington, D.C., 1993, pp. 144–148. LinkGoogle Scholar

  • [17] Meirovitch L., “General Motion of a Variable-Mass Flexible Rocket with Internal Flow,” Journal of Spacecraft and Rockets, Vol. 7, No. 2, 1970, pp. 186–195. doi:https://doi.org/10.2514/3.29897 JSCRAG 0022-4650 LinkGoogle Scholar