Skip to main content
Skip to article control options
No AccessFull-Length Paper

Global Linear Parameter-Varying Modeling of Flapping-Wing Dynamics Using Flight Data

Published Online:https://doi.org/10.2514/1.G003505

Taking full advantage of the favorable flight properties of biologically inspired flapping-wing micro aerial vehicles requires having insight into their dynamics and providing adequate control in all flight conditions. Because of the high complexity of flapping flight and limited availability of accurate flight data, however, global models are not readily available, particularly models validated with flight data and suitable for practical applications. This paper proposes an approach for global modeling of nonlinear flapping-wing dynamics, constructing a linear parameter-varying model from a set of local linear models. The model parameters and scheduling functions are determined using system identification, from free-flight data collected on a real test platform over a significant part of the flight envelope. The resulting model allows for the dominant parts of the dynamics to be accurately represented across the considered range of conditions. With 25 parameters overall, it significantly improves on the starting point of 46 local models with 12 parameters each. Moreover, a single model that adapts to the flight condition provides flexibility and continuous coverage, highly useful for simulation and control applications. Although in the explored part of the flight envelope nonlinearity was found to be limited, the approach is scalable and expected to also cover larger variations.

References

  • [1] Ellington C. P., “The Aerodynamics of Hovering Insect Flight. I. The Quasi-Steady Analysis,” Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 305, No. 1122, 1984, pp. 1–15. doi:https://doi.org/10.1098/rstb.1984.0049 CrossrefGoogle Scholar

  • [2] Ellington C. P., van den Berg C., Willmott A. P. and Thomas A. L. R., “Leading-Edge Vortices in Insect Flight,” Nature, Vol. 384, No. 6610, 1996, pp. 626–630. doi:https://doi.org/10.1038/384626a0 CrossrefGoogle Scholar

  • [3] Dickinson M. H., Lehmann F.-O. and Sane S. P., “Wing Rotation and the Aerodynamic Basis of Insect Flight,” Science, Vol. 284, No. 5422, 1999, pp. 1954–1960. doi:https://doi.org/10.1126/science.284.5422.1954 SCIEAS 0036-8075 CrossrefGoogle Scholar

  • [4] Taylor G. K. and Thomas A. L. R., “Dynamic Flight Stability in the Desert Locust Schistocerca Gregaria,” Journal of Experimental Biology, Vol. 206, No. 16, Aug. 2003, pp. 2803–2829. doi:https://doi.org/10.1242/jeb.00501 JEBIAM 0022-0949 CrossrefGoogle Scholar

  • [5] Grauer J., Ulrich E., Hubbard J. E., Pines D. and Humbert J. S., “Testing and System Identification of an Ornithopter in Longitudinal Flight,” Journal of Aircraft, Vol. 48, No. 2, March 2011, pp. 660–667. doi:https://doi.org/10.2514/1.C031208 LinkGoogle Scholar

  • [6] Caetano J. V., de Visser C. C., de Croon G. C. H. E., Remes B., De Wagter C. and Mulder M., “Linear Aerodynamic Model Identification of a Flapping Wing MAV Based on Flight Test Data,” International Journal of Micro Air Vehicles, Vol. 5, No. 4, 2013, pp. 273–286. doi:https://doi.org/10.1260/1756-8293.5.4.273 CrossrefGoogle Scholar

  • [7] Armanini S. F., de Visser C. C. and de Croon G. C. H. E., “Black-Box LTI Modelling of Flapping-Wing Micro Aerial Vehicle Dynamics,” AIAA Atmospheric Flight Mechanics Conference, AIAA Paper 2015-0234, 2015. doi:https://doi.org/10.2514/6.2015-0234 LinkGoogle Scholar

  • [8] Berman G. J. and Wang Z. J., “Energy-Minimizing Kinematics in Hovering Insect Flight,” Journal of Fluid Mechanics, Vol. 582, July 2007, pp. 153–168. doi:https://doi.org/10.1017/S0022112007006209 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [9] Orlowski C. T. and Girard A. R., “Averaging of the Nonlinear Dynamics of Flapping Wing Micro Air Vehicles for Symmetrical Flapping,” AIAA Journal, Vol. 49, No. 5, 2011, pp. 969–981. doi:https://doi.org/10.2514/1.J050649 AIAJAH 0001-1452 LinkGoogle Scholar

  • [10] Khan Z. A. and Agrawal S. K., “Force and Moment Characterization of Flapping Wings for Micro Air Vehicle Application,” Proceedings of the American Control Conference, Vol. 3, IEEE Publ., Piscataway, NJ, 2005, pp. 1515–1520. doi:https://doi.org/10.1109/ACC.2005.1470180 Google Scholar

  • [11] Xiong Y. and Sun M., “Stabilization Control of a Bumblebee in Hovering and Forward Flight,” Acta Mechanica Sinica, Vol. 25, No. 1, 2009, pp. 13–21. doi:https://doi.org/10.1007/s10409-008-0184-8 LHHPAE 0567-7718 CrossrefGoogle Scholar

  • [12] Wu J. and Sun M., “Control for Going from Hovering to Small Speed Flight of a Model Insect,” Acta Mechanica Sinica, Vol. 25, No. 3, 2009, pp. 295–302. doi:https://doi.org/10.1007/s10409-009-0241-y LHHPAE 0567-7718 CrossrefGoogle Scholar

  • [13] Finio B. M., Perez-Arancibia N. O. and Wood R. J., “System Identification and Linear Time-Invariant Modeling of an Insect-Sized Flapping-Wing Micro Air Vehicle,” 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE Publ., Piscataway, NJ, 2011, pp. 1107–1114. doi:https://doi.org/10.1109/IROS.2011.6094421 Google Scholar

  • [14] Duan H. and Li Q., “Dynamic Model and Attitude Control of Flapping Wing Micro Aerial Vehicle,” IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE Publ., Piscataway, NJ, Dec. 2009, pp. 451–456. doi:https://doi.org/10.1109/ROBIO.2009.5420689 Google Scholar

  • [15] Chand A. N., Kawanishi M. and Narikiyo T., “Parameter Estimation for the Pitching Dynamics of a Flapping-Wing Flying Robot,” IEEE International Conference on Advanced Intelligent Mechatronics (AIM), IEEE Publ., Piscataway, NJ, 2015, pp. 1552–1558. doi:https://doi.org/10.1109/AIM.2015.7222763 Google Scholar

  • [16] Armanini S. F., de Visser C. C., de Croon G. C. H. E. and Mulder M., “Time-Varying Model Identification of Flapping-Wing Vehicle Dynamics Using Flight Data,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 3, 2016, pp. 526–541. doi:https://doi.org/10.2514/1.G001470 JGCODS 0731-5090 LinkGoogle Scholar

  • [17] Sename O., Gáspár P. and Bokor J., (eds.), Robust Control and Linear Parameter Varying Approaches, Lecture Notes in Control and Information Sciences, Springer, Berlin, 2013, Chap. 1. doi:https://doi.org/10.1007/978-3-642-36110-4 CrossrefGoogle Scholar

  • [18] Tóth R., Van den Hof P. M. J., Ludlage J. H. A. and Heuberger P. S. C., “Identification of Nonlinear Process Models in an LPV Framework,” Proceedings of the 9th International Symposium on Dynamics and Control of Process Systems, Vol. 43, No. 5, Elsevier, Amsterdam, 2010, pp. 869–874. doi:https://doi.org/10.3182/20100705-3-BE-2011.00145 Google Scholar

  • [19] Leith D. J. and Leithead W. E., “Survey of Gain-Scheduling Analysis and Design,” International Journal of Control, Vol. 73, No. 11, 2000, pp. 1001–1025. doi:https://doi.org/10.1080/002071700411304 IJCOAZ 0020-7179 CrossrefGoogle Scholar

  • [20] Morelli E. A., “Global Nonlinear Aerodynamic Modeling Using Multivariate Orthogonal Functions,” Journal of Aircraft, Vol. 32, No. 2, 1995, pp. 270–277. doi:https://doi.org/10.2514/3.46712 LinkGoogle Scholar

  • [21] Brandon J. M. and Morelli E. A., “Real-Time Onboard Global Nonlinear Aerodynamic Modeling from Flight Data,” Journal of Aircraft, Vol. 53, No. 5, 2016, pp. 1261–1297. doi:https://doi.org/10.2514/1.C033133 LinkGoogle Scholar

  • [22] de Visser C. C., Mulder J. A. and Chu Q. P., “Global Nonlinear Aerodynamic Model Identification with Multivariate Splines,” AIAA Atmospheric Flight Mechanics Conference, AIAA Paper 2009-5726, 2009. doi:https://doi.org/10.2514/6.2009-5726 LinkGoogle Scholar

  • [23] Fujimori A. and Ljung L., “Model Identification of Linear Parameter Varying Aircraft Systems,” Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 220, No. 4, 2006, pp. 337–346. doi:https://doi.org/10.1243/09544100JAERO28 CrossrefGoogle Scholar

  • [24] Marcos A. and Balas G. J., “Development of Linear-Parameter-Varying Models for Aircraft,” Journal of Guidance, Control, and Dynamics, Vol. 27, No. 2, 2004, pp. 218–228. doi:https://doi.org/10.2514/1.9165 JGCODS 0731-5090 LinkGoogle Scholar

  • [25] Marcos A., Veenman J., Scherer C. W., De Zaiacomo G., Mostaza D., Kerr M., Koroglu H. and Bennani S., “Application of LPV Modeling, Design and Analysis Methods to a Re-Entry Vehicle,” AIAA Guidance, Navigation and Control Conference, AIAA Paper 2010-8192, 2010. doi:https://doi.org/10.2514/6.2010-8192 LinkGoogle Scholar

  • [26] Balas G. J., Fiahlo I., Packard A., Renfrow J. and Mullaney C., “On the Design of the LPV Controllers for the F-14 Aircraft Lateral-Directional Axis During Powered Approach,” Proceedings of the American Control Conference, IEEE Publ., Piscataway, NJ, 1997. doi:https://doi.org/10.2514/2.4323 Google Scholar

  • [27] Seiler P., Balas G. and Packard A., “Linear Parameter Varying Control for the X-53 Active Aeroelastic Wing,” Control of Linear Parameter Varying Systems with Applications, Springer, Boston, 2012, pp. 483–512. doi:https://doi.org/10.1007/978-1-4614-1833-7_19 CrossrefGoogle Scholar

  • [28] Westermayer C., Schirrer A., Hemedi M. and Kozek M., “Linear Parameter-Varying Control of a Large Blended Wing Body Flexible Aircraft,” IFAC Proceedings, Vol. 43, No. 15, 2010, pp. 19–24. doi:https://doi.org/10.3182/20100906-5-JP-2022.00005 IPSEET CrossrefGoogle Scholar

  • [29] Weilai J., Chaoyang D. and Qing W., “A Systematic Method of Smooth Switching LPV Controllers Design for a Morphing Aircraft,” Chinese Journal of Aeronautics, Vol. 28, No. 6, 2015, pp. 1640–1649. doi:https://doi.org/10.1016/j.cja.2015.10.005 CJAEEZ 1000-9361 CrossrefGoogle Scholar

  • [30] Berger T., Tischler M., Hagerott S. G., Cotting M. C., Gray W. R., Gresham J. L., George J. E., Krogh K. J., D’Argeniok A. and Howland J. D., “Development and Validation of a Flight-Identified Full-Envelope Business Jet Simulation Model Using a Stitching Architecture,” AIAA Modeling and Simulation Technologies Conference, AIAA Paper 2017-1550, 2017. doi:https://doi.org/10.2514/6.2017-1550 LinkGoogle Scholar

  • [31] Klein V. and Morelli E. A., Aircraft System Identification: Theory and Practice, AIAA Education Series, AIAA, Reston, VA, 2006, Chap. 5. CrossrefGoogle Scholar

  • [32] de Croon G. C. H. E., Perçin M., Remes B. D. W., Ruijsink R. and De Wagter C., The DelFly Design, Aerodynamics, and Artificial Intelligence of a Flapping Wing Robot, Springer, The Netherlands, 2016, Chaps. 1–4. Google Scholar

  • [33] Armanini S. F., Karásek M., de Croon G. C. H. E. and de Visser C. C., “Onboard/Offboard Sensor Fusion for High-Fidelity Flapping-Wing Robot Flight Data,” Journal of Guidance, Control and Dynamics, Vol. 40, No. 8, 2017, pp. 2132–2121. doi:https://doi.org/10.2514/1.G002527 LinkGoogle Scholar

  • [34] Armanini S. F., Karásek M., de Visser C. C., de Croon G. C. H. E. and Mulder M., “Flight Testing and Preliminary Analysis for Global System Identification of Ornithopter Dynamics Using On-Board and Off-Board Data,” AIAA Atmospheric Flight Mechanics Conference, AIAA Paper 2017-1634, 2017. doi:https://doi.org/10.2514/6.2017-1634 LinkGoogle Scholar

  • [35] Karásek M., Koopmans A. J., Armanini S. F., Remes B. D. W. and de Croon G. C. H. E., “Free Flight Force Estimation of a 23.5 g Flapping Wing MAV Using an On-Board IMU,” International Conference on Intelligent Robots and Systems (IROS), 2016. doi:https://doi.org/10.1109/IROS.2016.7759729 Google Scholar

  • [36] Caetano J. V., de Visser C. C., Remes B. D., De Wagter C., Van Kampen E.-J. and Mulder M., “Controlled Flight Maneuvers of a Flapping Wing Micro Air Vehicle: A Step Towards the Delfly II Identification,” AIAA Atmospheric Flight Mechanics Conference, AIAA Paper 2013-4843, 2013. doi:https://doi.org/10.2514/6.2013-4843 LinkGoogle Scholar

  • [37] Orlowski C., Girard A. and Shyy W., “Derivation and Simulation of the Nonlinear Dynamics of a Flapping Wing Micro-Air Vehicle,” European Micro Aerial Vehicle Conference and Flight Competition, 2009, www.imavs.org/papers/2009/33_EMAV09.pdf. Google Scholar

  • [38] Bolender M. A., “Rigid Multi-Body Equations-of-Motion for Flapping Wing MAVs Using Kane Equations,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2009-6158, Aug. 2009. doi:https://doi.org/10.2514/6.2009-6158 LinkGoogle Scholar

  • [39] Grauer J. A. and Hubbard J. E., “Multibody Model of an Ornithopter,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 5, 2009, pp. 1675–1679. doi:https://doi.org/10.2514/1.43177 JGCODS 0731-5090 LinkGoogle Scholar

  • [40] Sun M. and Xiong Y., “Dynamic Flight Stability of a Hovering Bumblebee,” Journal of Experimental Biology, Vol. 208, No. 3, Feb. 2005, pp. 447–459. doi:https://doi.org/10.1242/jeb.01407 JEBIAM 0022-0949 CrossrefGoogle Scholar

  • [41] Faruque I. and Sean Humbert J., “Dipteran Insect Flight Dynamics. Part 1 Longitudinal Motion About Hover,” Journal of Theoretical Biology, Vol. 264, No. 2, 2010, pp. 538–552. doi:https://doi.org/10.1016/j.jtbi.2010.02.018 JTBIAP 0022-5193 CrossrefGoogle Scholar

  • [42] Caetano J. V., Armanini S. F. and Karásek M., “In-Flight Data Acquisition and Flight Testing for System Identification of Flapping-Wing MAVs,” IEEE International Conference on Unmanned Aerial Systems (ICUAS), 2017. doi:https://doi.org/10.1109/ICUAS.2017.7991452 Google Scholar

  • [43] Mulder J., “Design and Evaluation of Dynamic Flight Test Manoeuvres,” Ph.D., Delft Univ. of Technology, Delft, The Netherlands, 1986. Google Scholar

  • [44] Morelli E., “Flight Test Validation of Optimal Input Design and Comparison to Conventional Inputs,” AIAA Atmospheric Flight Mechanics Conference, AIAA Paper 1997-3711, 1997. doi:https://doi.org/10.2514/6.1997-3711 LinkGoogle Scholar

  • [45] Papageorgiou G., Glover K., D'Mello G. and Patel Y., “Taking Robust LPV Control into Flight on the VAAC Harrier,” Proceedings of the 39th IEEE Conference on Decision and Control, Vol. 5, IEEE Publ., Piscataway, NJ, 2000, pp. 4558–4564. doi:https://doi.org/10.1109/CDC.2001.914633 Google Scholar

  • [46] Hammoudi M. N. and Lowenberg M. H., “Dynamic Gain Scheduled Control of an F16 Model,” AIAA Guidance, Navigation and Control Conference, AIAA Paper 2008-6487, 2008. doi:https://doi.org/10.2514/6.2008-6487 Google Scholar

  • [47] Bamieh B. and Giarré L., “Identification of Linear Parameter Varying Models,” International Journal of Robust and Nonlinear Control, Vol. 12, No. 9, 2002, pp. 841–853. doi:https://doi.org/10.1002/rnc.v12:9 CrossrefGoogle Scholar

  • [48] Tóth R., “Modeling and Identification of Linear Parameter-Varying Systems an Orthonormal Basis Function Approach,” Ph.D. Thesis, Delft Univ. of Technology, Delft, The Netherlands, 2008. Google Scholar

  • [49] Jategaonkar R., Flight Vehicle System Identification a Time Domain Methodology, Progress in Astronautics and Aeronautics, AIAA, Reston, VA, 2006, Chap. 6. LinkGoogle Scholar

  • [50] Klein V. and Batterson J. G., “Determination of Airplane Model Structure from Flight Data Using Splines and Stepwise Regression,” NASA TP 2126, 1983. Google Scholar