Skip to main content

IMPORTANT NOTICE: The ARC website is being updated on Tuesday, May 28, 2024. ARC will be in a "Read Only" mode. Viewing and downloading content will be available but other functions are restricted. For further inquiries, please contact [email protected].

Skip to article control options
No AccessEngineering Note

Model Predictive Control of Spacecraft Relative Motion with Convexified Keep-Out-Zone Constraints

Published Online:https://doi.org/10.2514/1.G003549
Free first page

References

  • [1] Lu P., “Introducing Computational Guidance and Control,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017, p. 193. doi:https://doi.org/10.2514/1.G002745 JGCODS 0731-5090 LinkGoogle Scholar

  • [2] Tsiotras P. and Mesbahi M., “Toward an Algorithmic Control Theory,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017, pp. 194–196. doi:https://doi.org/10.2514/1.G002754 JGCODS 0731-5090 LinkGoogle Scholar

  • [3] Eren U., Prach A., Koçer B. B., Raković S. V., Kayacan E. and Açikmeşe B., “Model Predictive Control in Aerospace Systems: Current State and Opportunities,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 7, 2017, pp. 1541–1566. doi:https://doi.org/10.2514/1.G002507 JGCODS 0731-5090 LinkGoogle Scholar

  • [4] Boyd S. and Vandenberghe L., Convex Optimization, Cambridge Univ. Press, New York, 2004, Chaps. 1, 4, 11. CrossrefGoogle Scholar

  • [5] Rawlings J. B. and Mayne D. Q., Model Predictive Control: Theory and Design, Nob Hill Publ., Madison, WI, 2015, pp. 112–153, Chap. 2. Google Scholar

  • [6] Reif J. H., “Complexity of the Generalized Mover’s Problem,” TR-04-85, Harvard Univ., Cambridge, MA, 1985, http://www.dtic.mil/dtic/tr/fulltext/u2/a161378.pdf [retrieved April 2017]. Google Scholar

  • [7] Park H., Di Cairano S. and Kolmanovsky I., “Model Predictive Control for Spacecraft Rendezvous and Docking with a Rotating/Tumbling Platform and for Debris Avoidance,” Proceedings of the 2011 American Control Conference, IEEE, New York, 2011, pp. 1922–1927. Google Scholar

  • [8] Weiss A., Baldwin M., Erwin R. S. and Kolmanovsky I., “Model Predictive Control for Spacecraft Rendezvous and Docking: Strategies for Handling Constraints and Case Studies,” IEEE Transactions on Control Systems Technology, Vol. 23, No. 4, 2015, pp. 1638–1647. doi:https://doi.org/10.1109/TCST.2014.2379639 IETTE2 1063-6536 CrossrefGoogle Scholar

  • [9] Park H., Zagaris C., Virgili-Llop J., Zappulla R., Kolmanovsky I. and Romano M., “Analysis and Experimentation of Model Predictive Control for Spacecraft Rendezvous and Proximity Operations with Multiple Obstacle Avoidance,” AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2016-5273, 2016. doi:https://doi.org/10.2514/6.2016-5273 LinkGoogle Scholar

  • [10] Lu P. and Liu X., “Autonomous Trajectory Planning for Rendezvous and Proximity Operations by Conic Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 2, 2013, pp. 375–389. doi:https://doi.org/10.2514/1.58436 JGCODS 0731-5090 LinkGoogle Scholar

  • [11] Liu X. and Lu P., “Solving Nonconvex Optimal Control Problems by Convex Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 3, 2014, pp. 750–765. doi:https://doi.org/10.2514/1.62110 JGCODS 0731-5090 LinkGoogle Scholar

  • [12] Mao Y., Szmuk M. and Açkmeşe B., “Successive Convexification of Non-Convex Optimal Control Problems with State Constraints,” Proceedings of the 55th Conference on Decision and Control, IEEE Publ., Piscataway, NJ, 2016, pp. 3636–3641. Google Scholar

  • [13] Virgili-Llop J., Zagaris C., Zappulla R., Bradstreet A. and Romano M., “Convex Optimization for Proximity Maneuvering of a Spacecraft with a Robotic Manipulator,” 27th AAS/AIAA Spaceflight Mechanics Meeting, Univelt, San Diego, CA, 2017, pp. 1027–1046. Google Scholar

  • [14] Virgili-Llop J., Zagaris C., Zappulla R., Bradstreet A. and Romano M., “Laboratory Experiments on the Capture of a Tumbling Object by a Spacecraft-Manipulator System Using a Convex-Programming-Based Guidance,” AAS/AIAA Astrodynamics Specialist Conference, Univelt, San Diego, CA, 2017, pp. 787–808. Google Scholar

  • [15] Li Q., Yuan J., Zhang B. and Gao C., “Model Predictive Control for Autonomous Rendezvous and Docking with a Tumbling Target,” Aerospace Science and Technology, Vol. 69, July 2017, pp. 700–711. doi:https://doi.org/10.1016/j.ast.2017.07.022 CrossrefGoogle Scholar

  • [16] Richards A., Schouwenaars T., How J. P. and Feron E., “Spacecraft Trajectory Planning with Avoidance Constraints Using Mixed-Integer Linear Programming,” Journal of Guidance, Control, and Dynamics, Vol. 25, No. 4, 2002, pp. 755–764. doi:https://doi.org/10.2514/2.4943 JGCODS 0731-5090 LinkGoogle Scholar

  • [17] Richards A. and How J. P., “Model Predictive Control of Vehicle Maneuvers with Guaranteed Completion Time and Robust Feasibility,” Proceedings of the 2003 American Control Conference, IEEE Publ., Piscataway, NJ, 2003, pp. 4034–4040. Google Scholar

  • [18] Jewison C., Erwin R. S. and Saenz-Otero A., “Model Predictive Control with Ellipsoid Obstacle Constraints for Spacecraft Rendezvous,” IFAC-PapersOnLine, Vol. 48, No. 9, 2015, pp. 257–262. doi:https://doi.org/10.1016/j.ifacol.2015.08.093 CrossrefGoogle Scholar

  • [19] Virgili-Llop J., Zagaris C., Park H. and Romano M., “Experimental Evaluation of Model Predictive Control and Inverse Dynamics Control for Spacecraft Proximity and Docking Maneuvers,” CEAS Space Journal, 2016, pp. 1–13. doi:https://doi.org/10.1007/s12567-017-0155-7 Google Scholar

  • [20] Martinson N., “Obstacle Avoidance Guidance and Control Algorithm for Spacecraft Maneuvers,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2009-5672, Aug. 2009. doi:https://doi.org/10.2514/6.2009-5672 LinkGoogle Scholar

  • [21] Muñoz J. D. and Fitz-Coy N. G., “Rapid Path-Planning Options for Autonomous Proximity Operations of Spacecraft,” AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2010-7667, Aug. 2010. doi:https://doi.org/10.2514/6.2010-7667 LinkGoogle Scholar

  • [22] Zappulla R., Park H., Virgili-Llop J. and Romano M., “Experiments on Autonomous Rendezvous and Docking Using an Adaptive Artificial Potential Field Approach,” 26th AAS/AIAA Spaceflight Mechanics Meeting, Univelt, San Diego, CA, 2016, pp 4477–4494. Google Scholar

  • [23] Zappulla R., Park H., Virgili-Llop J. and Romano M., “Real-Time Autonomous Spacecraft Proximity Maneuvers and Docking Using an Adaptive Artificial Potential Field,” IEEE Transactions on Control Systems Technology (in press). IETTE2 1063-6536 Google Scholar

  • [24] Starek J. A., Schmerling E., Maher G. D., Barbee B. W. and Pavone M., “Fast, Safe, and Propellant-Efficient Spacecraft Planning Under Clohessy–Wiltshire–Hill Dynamics,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017, pp. 418–438. doi:https://doi.org/10.2514/1.G001913 JGCODS 0731-5090 LinkGoogle Scholar

  • [25] Petersen C., Jaunzemis A., Baldwin M., Holzinger M. and Kolmanovsky I., “Model Predictive Control and Extended Command Governor for Improving Robustness of Relative Motion Guidance and Control,” 24th AAS/AIAA Spaceflight Mechanics Meeting, Univelt, San Diego, CA, 2014, pp. 701–718. Google Scholar

  • [26] Clohessy W. and Wiltshire R., “Terminal Guidance System for Satellite Rendezvous,” Journal of the Aerospace Sciences, Vol. 27, No. 9, 1960, pp. 653–658. doi:https://doi.org/10.2514/8.8704 LinkGoogle Scholar

  • [27] Alfriend K. T., Vadali S. R., Gurfil P., How J. P. and Breger L. S., Spacecraft Formation Flying: Dynamics, Control, and Navigation, Elsevier Astrodynamics Series, Butterworth–Heinmann, Oxford, U.K., 2010, pp. 84–90, Chap. 5. Google Scholar

  • [28] Grune L. and Pannek J., Nonlinear Model Predictive Control: Theory and Algorithms, Springer, New York, 2011, pp. 113–161, Chap. 6. CrossrefGoogle Scholar

  • [29] Mayne D. Q., Rawlings J. B., Rao C. V. and Scokaert P. O. M., “Constrained Model Predictive Control: Stability and Optimality,” Automatica, Vol. 36, No. 6, 2000, pp. 789–814. doi:https://doi.org/10.1016/S0005-1098(99)00214-9 ATCAA9 0005-1098 CrossrefGoogle Scholar

  • [30] Löfberg J., “Oops! I cannot do it Again: Testing for Recursive Feasibility in MPC,” Automatica, Vol. 48, No. 3, 2012, pp. 550–555. doi:https://doi.org/10.1016/j.automatica.2011.12.003 ATCAA9 0005-1098 CrossrefGoogle Scholar

  • [31] Wie B., Space Vehicles Dynamics and Control, 2nd ed., AIAA Education Series, AIAA, Reston, VA, 2008, pp. 299–303, Chap. 4. LinkGoogle Scholar

  • [32] Kirk D. E., Optimal Control Theory: An Introduction, Dover, Mineola, NY, 2004, pp. 259–260, Chap. 5. Google Scholar

  • [33] Patterson M. A. and Rao A. V., GPOPS-II: A General Purpose MATLAB Software for Multiple-Phase Optimal Control Problems, Software Package, Ver. 2.1, July 2016, http://www.gpops2.com [retrieved Aug. 2017]. Google Scholar