Skip to main content
Skip to article control options
No AccessFull-Length Paper

Flight-Path Reconstruction and Flight Test of Four-Line Power Kites

Published Online:https://doi.org/10.2514/1.G003581

A flight-path reconstruction algorithm for tethered aircraft, which is based on an extended Kalman filter, is presented. The algorithm is fed by the measurements of a set of onboard and ground-based instruments and provides the optimal estimation of the system state-space trajectory, which includes typical aircraft variables such as position and velocity, as well as an estimation of the aerodynamic force and torque. Therefore, it can be applied to closed-loop control in airborne wind energy systems and it is a first step toward aerodynamic parameter identification of tethered aircraft using flight-test data. The performance of the algorithm is investigated by feeding it with real flight data obtained from a low-cost and highly portable experimental setup with a four-line kite. Several flight tests, which include pullup and lateral-directional steering maneuvers with two kites of different areas, are conducted. The coherence of the estimations provided by the filter, such as the kite state-space trajectory and aerodynamic forces and torques, is analyzed. For some standard variables, such as kite Euler angles and position, the results are also compared with a second independent onboard estimator.

References

  • [1] Loyd M. L., “Crosswind Kite Power,” Journal of Energy, Vol. 4, No. 3, May 1980, pp. 106–111. doi:https://doi.org/10.2514/3.48021 JENED5 0146-0412 LinkGoogle Scholar

  • [2] Cherubini A., Papini A., Vertechy R. and Fontana M., “Airborne Wind Energy Systems: A Review of the Technologies,” Renewable and Sustainable Energy Reviews, Vol. 51, Nov. 2015, pp. 1461–1476. doi:https://doi.org/10.1016/j.rser.2015.07.053 CrossrefGoogle Scholar

  • [3] Schmehl R., (ed.), Airborne Wind Energy–Advances in Technology Development and Research, Green Energy and Technology, 1st ed., Springer, Singapore, 2018. doi:https://doi.org/10.1007/978-981-10-1947-0 CrossrefGoogle Scholar

  • [4] Carpenter H., “Tethered Aircraft System for Gathering Energy from Wind,” U.S. Patent 6,254,034, July 2001. Google Scholar

  • [5] Williams P., Lansdorp B. and Ockesl W., “Optimal Crosswind Towing and Power Generation with Tethered Kites,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 1, Jan. 2008, pp. 81–93. doi:https://doi.org/10.2514/1.30089 JGCODS 0731-5090 LinkGoogle Scholar

  • [6] Payne P. and McCutchen C., “Self-Erecting Windmill,” U.S. Patent 3,987,987, Oct. 1976. Google Scholar

  • [7] Felker F., “Progress and Challenges in Airborne Wind Energy,” Book of Abstracts of the International Airborne Wind Energy Conference 2017, edited by Diehl M., Leuthold R. and Schmehl R., Univ. of Freiburg, Delft Univ. of Technology, Freiburg, Germany, Oct. 2017, p. 188. doi:https://doi.org/10.4233/uuid:4c361ef1-d2d2-4d14-9868-16541f60edc7 Google Scholar

  • [8] Fagiano L. and Marks T., “Design of a Small-Scale Prototype for Research in Airborne Wind Energy,” IEEE/ASME Transactions on Mechatronics, Vol. 20, No. 1, Feb. 2015, pp. 166–177. doi:https://doi.org/10.1109/TMECH.2014.2322761 IATEFW 1083-4435 CrossrefGoogle Scholar

  • [9] Sánchez G., “Dynamics and Control of Single-Line Kites,” Aeronautical Journal, Vol. 110, No. 1111, 2006, pp. 615–621. doi:https://doi.org/10.1017/S0001924000001470 AENJAK 0001-9240 CrossrefGoogle Scholar

  • [10] Groot S. G. C. D., Breukels J., Schmehl R. and Ockels W. J., “Modelling Kite Flight Dynamics Using a Multibody Reduction Approach,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 6, Nov. 2011, pp. 1671–1682. doi:https://doi.org/10.2514/1.52686 JGCODS 0731-5090 LinkGoogle Scholar

  • [11] Gros S. and Diehl M., “Modeling of Airborne Wind Energy Systems in Natural Coordinates,” Airborne Wind Energy, edited by Ahrens U., Diehl M. and Schmehl R., Springer, Berlin, 2013, pp. 181–203. doi:https://doi.org/10.1007/978-3-642-39965-7 CrossrefGoogle Scholar

  • [12] Gohl F. and Luchsinger R. H., “Simulation Based Wing Design for Kite Power,” Airborne Wind Energy, edited by Ahrens U., Diehl M. and Schmehl R., Springer, Berlin, 2013, pp. 325–338. doi:https://doi.org/10.1007/978-3-642-39965-7_10 CrossrefGoogle Scholar

  • [13] Alonso-Pardo J. and Sánchez-Arriaga G., “Kite Model with Bridle Control for Wind-Power Generation,” Journal of Aircraft, Vol. 52, No. 3, April 2015, pp. 917–923. doi:https://doi.org/10.2514/1.C033283 LinkGoogle Scholar

  • [14] Pastor-Rodríguez A., Sánchez-Arriaga G. and Sanjurjo-Rivo M., “Modeling and Stability Analysis of Tethered Kites at High Altitudes,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 8, May 2017, pp. 1892–1901. doi:https://doi.org/10.2514/1.G002550 JGCODS 0731-5090 LinkGoogle Scholar

  • [15] Sánchez-Arriaga G., Pastor-Rodríguez A., Borobia-Moreno R. and Schmehl R., “A Constraint-Free Flight Simulator Package for Airborne Wind Energy Systems,” Journal of Physics: Conference Series, Vol. 1037, No. 6, 2018, Paper 062018, http://stacks.iop.org/1742-6596/1037/i=6/a=062018. Google Scholar

  • [16] Salord Losantos L. and Sánchez-Arriaga G., “Flight Dynamics and Stability of Kites in Steady and Unsteady Wind Conditions,” Journal of Aircraft, Vol. 52, No. 2, 2015, pp. 660–666. doi:https://doi.org/10.2514/1.C032825 LinkGoogle Scholar

  • [17] Sánchez-Arriaga G., García-Villalba M. and Schmehl R., “Modeling and Dynamics of a Two-Line Kite,” Applied Mathematical Modelling, Vol. 47, July 2017, pp. 473–486. doi:https://doi.org/10.1016/j.apm.2017.03.030 AMMODL 0307-904X CrossrefGoogle Scholar

  • [18] Bosch A., Schmehl R., Tiso P. and Rixen D., “Dynamic Nonlinear Aeroelastic Model of a Kite for Power Generation,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 5, June 2014, pp. 1426–1436. doi:https://doi.org/10.2514/1.G000545 JGCODS 0731-5090 LinkGoogle Scholar

  • [19] Folkersma M., Schmehl R. and Viré A., “Fluid-Structure Interaction Simulations on Kites,” Book of Abstracts of the International Airborne Wind Energy Conference 2017, edited by Diehl M., Leuthold R. and Schmehl R., Freiburg, Germany, 2017, p. 144. doi:https://doi.org/10.4233/uuid:4c361ef1-d2d2-4d14-9868-16541f60edc7 Google Scholar

  • [20] de Wachter A., “Deformation and Aerodynamic Performance of a Ram-Air Wing,” M.Sc. Thesis, Delft Univ. of Technology, Delft, The Netherlands, 2008. Google Scholar

  • [21] Milne G., Soijer M., Juliana S., Hermansyah M. and Mulder J., “Maximum Likelihood Stability and Control Derivative Identification of a Cessna Citation II,” AIAA Paper 2001-4013, 2001. doi:https://doi.org/10.2514/6.2001-4013 LinkGoogle Scholar

  • [22] Lichota P. and Lasek M., “Maximum Likelihood Estimation for Identification of Aircraft Aerodynamic Derivatives,” Archive of Mechanical Engineering, Vol. 60, No. 2, 2013, pp. 219–230. doi:https://doi.org/10.2478/meceng-2013-0014 CrossrefGoogle Scholar

  • [23] Schmidt E., Lellis M. D., Saraiva R. and Trofino A., “State Estimation of a Tethered Airfoil for Monitoring, Control and Optimization,” IFAC-PapersOnLine, 20th IFAC World Congress, Vol. 50, No. 1, 2017, pp. 13,246–13,251. doi:https://doi.org/10.1016/j.ifacol.2017.08.1960 CrossrefGoogle Scholar

  • [24] Ramachandran S., Schneider H., Mason J. and Stalford H., “Identification of Aircraft Aerodynamic Characteristics at High Angles of Attack and Sideslip Using the Estimation Before Modeling/EBM/Technique,” Guidance, Navigation, and Control and Co-Located Conferences, AIAA Paper 1977-1169, Aug. 1977. doi:https://doi.org/10.2514/6.1977-1169 LinkGoogle Scholar

  • [25] Hoff J. C. and Cook M. V., “Aircraft Parameter Identification Using an Estimation-Before-Modelling Technique,” Aeronautical Journal, Vol. 100, No. 997, 1996, pp. 259–268. doi:https://doi.org/10.1017/S000192400002889X Google Scholar

  • [26] Mulder J., Chu Q., Sridhar J., Breeman J. and Laban M., “Non-Linear Aircraft Flight Path Reconstruction Review and New Advances,” Progress in Aerospace Sciences, Vol. 35, No. 7, 1999, pp. 673–726. doi:https://doi.org/10.1016/S0376-0421(99)00005-6 CrossrefGoogle Scholar

  • [27] Licitra G., Burger A., Williams P., Ruiterkamp R. and Diehl M., “Optimum Experimental Design of a Rigid Wing AWE Pumping System,” 56th IEEE Conference on Decision and Control, IEEE Publ., Piscataway, NJ, Dec. 2017, pp. 4018–4025. doi:https://doi.org/10.1109/CDC.2017.8264250 Google Scholar

  • [28] Licitra G., Bürger A., Williams P., Ruiterkamp R. and Diehl M., “System Identification of a Rigid Wing Airborne Wind Energy System,” arXiv:1711.10010, Nov. 2017. Google Scholar

  • [29] Hummel J., “Automatisierte Vermessung und Charakterisierung der Dynamischen Eigenschaften Seilgebundener, Vollflexibler Tragflachen,” Ph.D. Dissertation, Technische Univ. Berlin, Berlin, 2017. Google Scholar

  • [30] Oehler J. and Schmehl R., “Experimental Characterization of a Force-Controlled Flexible Wing Traction Kite,” Book of Abstracts of the International Airborne Wind Energy Conference 2017, edited by Diehl M., Leuthold R. and Schmehl R., Albert Ludwig Univ. Freiburg and Delft Univ. of Technology, Freiburg, Germany, 2017, p. 125. doi:https://doi.org/10.4233/uuid:4c361ef1-d2d2-4d14-9868-16541f60edc7 Google Scholar

  • [31] Fagiano L., Huynh K., Bamieh B. and Khammash M., “On Sensor Fusion for Airborne Wind Energy Systems,” IEEE Transactions on Control Systems Technology, Vol. 22, No. 3, May 2014, pp. 930–943. doi:https://doi.org/10.1109/TCST.2013.2269865 IETTE2 1063-6536 CrossrefGoogle Scholar

  • [32] Fagiano L., Zgraggen A. U., Morari M. and Khammash M., “Automatic Crosswind Flight of Tethered Wings for Airborne Wind Energy: Modeling, Control Design, and Experimental Results,” IEEE Transactions on Control Systems Technology, Vol. 22, No. 4, July 2014, pp. 1433–1447. doi:https://doi.org/10.1109/TCST.2013.2279592 IETTE2 1063-6536 CrossrefGoogle Scholar

  • [33] Sri-Jayantha M. and Stengel R. F., “Determination of Nonlinear Aerodynamic Coefficients Using the Estimation-Before-Modeling Method,” Journal of Aircraft, Vol. 25, No. 9, Sept. 1988, pp. 796–804. doi:https://doi.org/10.2514/3.45662 LinkGoogle Scholar

  • [34] Goszczyński J. A., Michalski W. J. and Pietrucha J. A., “Estimation Before Modelling as the Method for Identification of the Aircraft Aerodynamic Characteristics in Nonlinear Flight Regime,” Journal of Theoretical and Applied Mechanics, Vol. 38, No. 1, 2000, pp. 107–120. Google Scholar

  • [35] Welch G. and Bishop G., “An Introduction to the Kalman Filter,” Dept. of Computer Science, Univ. of North Carolina at Chapel Hill, Chapel Hill, NC, 1995. Google Scholar

  • [36] Xing Z. and Gebre-Egziabher D., “Modeling and Bounding Low Cost Inertial Sensor Errors,” 2008 IEEE/ION Position, Location and Navigation Symposium, Monterey, CA, May 2008, pp. 1122–1132. doi:https://doi.org/10.1109/PLANS.2008.4569999 Google Scholar

  • [37] ICAO, “Manual of the ICAO Standard Atmosphere: Extended to 80 Kilometres (262,500 Feet),” 3rd ed., International Civil Aviation Organization (ICAO), Doc 7488/3, 1993. Google Scholar