Skip to main content
Skip to article control options
No AccessEngineering Notes

Energy-Optimal Guidance of Autonomous Underwater Vehicles Under Fluid-Particle Interaction

Published Online:https://doi.org/10.2514/1.G003695
Free first page

References

  • [1] Hackbarth P. A., Kreuzer E., Gray A. J. and Hedrick J. K., “Collaborative Control of Multiple AUVs for Improving the Estimation of Flow Field Dependent Variables,” 2012 IEEE/OES Autonomous Underwater Vehicles (AUV), Southampton, 2012, pp. 1–6. doi:https://doi.org/10.1109/AUV.2012.6380754 Google Scholar

  • [2] Bian X., Zhou J., Jia H. and Zhao X., “Adaptive Neural Network Control System of Bottom Following for an Underactuated AUV,” 2010 MTS/IEEE OCEANS, Seattle, WA, 2010, pp. 1–6. doi:https://doi.org/10.1109/OCEANS.2010.5664384 Google Scholar

  • [3] Bakolas E. and Marchidan A., “Time-Optimal Control of a Self-Propelled Particle in a Spatiotemporal Flow Field,” International Journal of Control, Vol. 89, No. 3, 2016, pp. 623–634. doi:https://doi.org/10.1080/00207179.2015.1088965 IJCOAZ 0020-7179 CrossrefGoogle Scholar

  • [4] Rhoads B., Mezi I. and Poje A., “Minimum Time Feedback Control of Autonomous Underwater Vehicles,” 49th IEEE Conference on Decision and Control (CDC), IEEE Publ., Piscataway, NJ, 2010, pp. 5828–5834. doi:https://doi.org/10.1109/CDC.2010.5717533 Google Scholar

  • [5] Lewis F. L., Vrabie D. L. and Syrmos V. L., Optimal Control, 3rd ed., Wiley, Hoboken, New Jersey, 2012, pp. 216–220. CrossrefGoogle Scholar

  • [6] Otte M., Silva W. and Frew E., “Any-Time Path-Planning: Time-Varying Wind Field+Moving Obstacles,” 2016 IEEE International Conference on Robotics and Automation (ICRA), IEEE Publ., Piscataway, NJ, 2016, pp. 2575–2582. doi:https://doi.org/10.1109/ICRA.2016.7487414 Google Scholar

  • [7] Dugar V., Choudhury S. and Scherer S., “A Kite in the Wind: Smooth Trajectory Optimization in a Moving Reference Frame,” 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE Publ., Piscataway, NJ, 2017, pp. 109–116. doi:https://doi.org/10.1109/ICRA.2017.7989017 Google Scholar

  • [8] Koay T. B. and Chitre M., “Energy-Efficient Path Planning for Fully Propelled Auvs in Congested Coastal Waters,” 2013 MTS/IEEE OCEANS, Bergen, 2013, pp. 1–0. doi:https://doi.org/10.1109/OCEANS-Bergen.2013.6608168 Google Scholar

  • [9] Inanc T., Shadden S. C. and Marsden J. E., “Optimal Trajectory Generation in Ocean Flows,” Proceedings of the American Control Conference, Portland, OR, 2005, pp. 674–679. doi:https://doi.org/10.1109/ACC.2005.1470035 Google Scholar

  • [10] Senatore C. and Ross S. D., “Fuel-Efficient Navigation in Complex Flows,” Proceedings of the American Control Conference, Seattle, WA, 2008, pp. 1244–1248. doi:https://doi.org/10.1109/ACC.2008.4586663 Google Scholar

  • [11] Nusse H. E. and Yorke J. A., “A Procedure for Finding Numerical Trajectories on Chaotic Saddles,” Physica D: Nonlinear Phenomena, Vol. 36, No. 1, 1989, pp. 137–156. doi:https://doi.org/10.1016/0167-2789(89)90253-4 CrossrefGoogle Scholar

  • [12] Hsieh M. A., Forgoston E., Mather T. W. and Schwartz I. B., “Robotic Manifold Tracking of Coherent Structures in Flows,” 2012 IEEE International Conference on Robotics and Automation, IEEE Publ., Piscataway, NJ, 2012, pp. 4242–4247. doi:https://doi.org/10.1109/ICRA.2012.6224769 Google Scholar

  • [13] Kim K. and Ura T., “Fuel-Optimally Guided Navigation and Tracking Control of AUV Under Current Interaction,” 2003 MTS/IEEE OCEANS, Vol. 2, San Diego, CA, 2003, pp. 663–670. doi:https://doi.org/10.1109/OCEANS.2003.178389 Google Scholar

  • [14] Das T., Mukherjee R. and Cameron J., “Optimal Trajectory Planning for Hot-Air Balloons in Linear Wind Fields,” Journal of Guidance, Control, and Dynamics, Vol. 26, No. 3, 2003, pp. 416–424. doi:https://doi.org/10.2514/2.5079 JGCODS 0731-5090 LinkGoogle Scholar

  • [15] Li J.-H., “Path Tracking of Underactuated Ships with General Form of Dynamics,” International Journal of Control, Vol. 89, No. 3, 2016, pp. 506–517. doi:https://doi.org/10.1080/00207179.2015.1083123 IJCOAZ 0020-7179 CrossrefGoogle Scholar

  • [16] Subramani D. N., Haley P. J. and Lermusiaux P. F. J., “Energy-Optimal Path Planning in the Coastal Ocean,” Journal of Geophysical Research: Oceans, Vol. 122, No. 122, 2017, pp. 3981–4003. doi:https://doi.org/10.1002/2016JC012231 CrossrefGoogle Scholar

  • [17] Kularatne D., “Optimal Paths in Time-Varying Flow Fields,” Ph.D. Thesis, Drexel Univ., Philadelphia, 2017. Google Scholar

  • [18] Kularatne D., Bhattacharya S. and Hsieh M. A., “Optimal Path Planning in Time-Varying Flows Using Adaptive Discretization,” IEEE Robotics and Automation Letters, Vol. 3, No. 1, Jan. 2018, pp. 458–465. doi:https://doi.org/10.1109/LRA.2017.2761939 CrossrefGoogle Scholar

  • [19] Rhoads B., Mezi I. and Poje A., “Efficient Guidance in Finite Time Flow Fields,” 52nd IEEE Conference on Decision and Control, IEEE Publ., Piscataway, NJ, 2013, pp. 6182–6189. doi:https://doi.org/10.1109/CDC.2013.6760866 Google Scholar

  • [20] Rhoads B. A., “Efficient Guidance of Underpowered Vehicles in Time-Varying Flow Fields,” Ph.D. Thesis, Univ. of California, Santa Barbara, CA, 2013. Google Scholar

  • [21] Fox R. W., McDonald A. T. and Pritchard P. J., Fluid Mechanics, 8th ed., Hoboken, New Jersey, 2012, pp. 259–262. Google Scholar

  • [22] Cartwright J. H. E., Feudel U., Károlyi G., de Moura A., Piro O. and Tél T., Dynamics of Finite-Size Particles in Chaotic Fluid Flows, Nonlinear Dynamics and Chaos: Advances and Perspectives, Springer, Berlin, 2010, pp. 51–87. CrossrefGoogle Scholar

  • [23] Raju N. and Meiburg E., “The Accumulation and Dispersion of Heavy Particles in Forced Two-Dimensional Mixing Layers. Part 2: The Effect of Gravity,” Physics of Fluids, Vol. 7, No. 6, 1995, pp. 1241–1264. doi:https://doi.org/10.1063/1.868581 CrossrefGoogle Scholar

  • [24] Flagan R. C. and Seinfeld J. H., Fundamentals of Air Pollution Engineering, Prentice–Hall, Englewood Cliffs, NJ, 1988, Chap. 5. Google Scholar

  • [25] Khan A. and Richardson J., “Fluid-Particle Interactions and Flow Characteristics of Fluidized Beds and Settling Suspensions of Spherical Particles,” Chemical Engineering Communications, Vol. 78, No. 1, 1989, pp. 111–130. doi:https://doi.org/10.1080/00986448908940189 CEGCAK 0098-6445 CrossrefGoogle Scholar

  • [26] Maury B., “Direct Simulations of 2D Fluid-Particle Flows in Biperiodic Domains,” Journal of Computational Physics, Vol. 156, No. 2, 1999, pp. 325–351. doi:https://doi.org/10.1006/jcph.1999.6365 JCTPAH 0021-9991 CrossrefGoogle Scholar