Skip to main content
Skip to article control options
No AccessFull-Length Papers

Fast Mesh Refinement in Pseudospectral Optimal Control

Published Online:https://doi.org/10.2514/1.G003904

Mesh refinement in pseudospectral (PS) optimal control is embarrassingly easy: simply increase the order N of the Lagrange interpolating polynomial, and the mathematics of convergence automates the distribution of the grid points. Unfortunately, as N increases, the condition number of the resulting linear algebra increases as N2; hence, spectral efficiency and accuracy are lost in practice. In this paper, Birkhoff interpolation concepts are advanced over an arbitrary grid to generate well-conditioned PS optimal control discretizations. It is shown that the condition number increases only as N in general, but it is independent of N for the special case of one of the boundary points being fixed. Hence, spectral accuracy and efficiency are maintained as N increases. The effectiveness of the resulting fast mesh refinement strategy is demonstrated by using polynomials of over one-thousandth order to solve a low-thrust long-duration orbit transfer problem.

References

  • [1] Ross I. M. and Karpenko M., “A Review of Pseudospectral Optimal Control: from Theory to Flight,” Annual Reviews in Control, Vol. 36, No. 2, 2012, pp. 182–197. doi:https://doi.org/10.1016/j.arcontrol.2012.09.002 CrossrefGoogle Scholar

  • [2] Boyd J., Chebyshev and Fourier Spectral Methods, Dover, Minola, NY, 2001. CrossrefGoogle Scholar

  • [3] Fahroo F. and Ross I. M., “Direct Trajectory Optimization by a Chebyshev Pseudospectral Method,” Journal of Guidance, Control, and Dynamics, Vol. 25, No. 1, 2002, pp.160–166. doi:https://doi.org/10.2514/2.4862 LinkGoogle Scholar

  • [4] Gong Q., Ross I. M. and Fahroo F., “Costate Computation by a Chebyshev Pseudospectral Method,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 2, 2010, pp. 623–628. doi:https://doi.org/10.2514/1.45154 LinkGoogle Scholar

  • [5] Trefethen L. N., Approximation Theory and Approximation Practice, SIAM, Philadelphia, PA, 2013. Google Scholar

  • [6] Shen J., Tang T. and Wang L.-L., Spectral Methods: Algorithms, Analysis and Applications, Springer, Heidelberg, 2011. CrossrefGoogle Scholar

  • [7] Fahroo F. and Ross I. M., “A Spectral Patching Method for Direct Trajectory Optimization,” Journal of the Astronautical Sciences, Vol. 48, Nos. 2–3, April–Sept. 2000, pp. 269–286. JALSA6 0021-9142 CrossrefGoogle Scholar

  • [8] Ross I. M. and Fahroo F., “Pseudospectral Knotting Methods for Solving Optimal Control Problems,” Journal of Guidance, Control, and Dynamics, Vol. 27, No. 3, 2004, pp. 397–405. doi:https://doi.org/10.2514/1.3426 LinkGoogle Scholar

  • [9] Ross I. M. and Fahroo F., “Discrete Verification of Necessary Conditions for Switched Nonlinear Optimal Control Systems,” Proceedings of the American Control Conference, Boston, MA, June 2004. Google Scholar

  • [10] Gong Q. and Ross I. M., “Autonomous Pseudospectral Knotting Methods for Space Mission Optimization,” Advances in the Astronautical Sciences, Vol. 124, AAS Paper 06-151, Springfield, VA, 2006, pp. 779–794. Google Scholar

  • [11] Gong Q., Fahroo F. and Ross I. M., “Spectral Algorithm for Pseudospectral Methods in Optimal Control,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 3, 2008, pp. 460–471. doi:https://doi.org/10.2514/1.32908 JGCODS 0731-5090 LinkGoogle Scholar

  • [12] Gong Q., Kang W. and Ross I. M., “A Pseudospectral Method for the Optimal Control of Constrained Feedback Linearizable Systems,” IEEE Transactions on Automatic Control, Vol. 51, No. 7, July 2006, pp. 1115–1129. doi:https://doi.org/10.1109/TAC.2006.878570 IETAA9 0018-9286 CrossrefGoogle Scholar

  • [13] Kang W., Gong Q. and Ross I. M., “On the Convergence of Nonlinear Optimal Control Using Pseudospectral Methods for Feedback Linearizable Systems,” International Journal of Robust and Nonlinear Control, Vol. 17, No. 14, 2007, pp. 1251–1277. doi:https://doi.org/10.1002/(ISSN)1099-1239 CrossrefGoogle Scholar

  • [14] Kang W., Ross I. M. and Gong Q., “Pseudospectral Optimal Control and its Convergence Theorems,” Analysis and Design of Nonlinear Control Systems, Springer–Verlag, Berlin, 2008, pp. 109–126. CrossrefGoogle Scholar

  • [15] Kang W., “Rate of Convergence for a Legendre Pseudospectral Optimal Control of Feedback Linearizable Systems,” Journal of Control Theory and Applications, Vol. 8, No. 4, 2010, pp. 391–405. CrossrefGoogle Scholar

  • [16] Herman A. and Conway B. A., “Direct Optimization Using Collocation Based on High-Order Gauss–Lobatto Quadrature Rules,” Journal of Guidance, Control, and Dynamics, Vol. 19, No. 3, 1996, pp. 592–599. doi:https://doi.org/10.2514/3.21662 LinkGoogle Scholar

  • [17] Hairer E., Nørsett S. P. and Wanner G., Solving Ordinary Differential Equations I: Nonstiff Problems, Springer–Verlag, Berlin, 1993. Google Scholar

  • [18] Conway B. A., “A Survey of Methods Available for the Numerical Optimization of Continuous Dynamic Systems,” Journal of Optimization Theory and Applications, Vol. 152, No. 2, 2012, pp. 271–306. doi:https://doi.org/10.1007/s10957-011-9918-z JOTABN 0022-3239 CrossrefGoogle Scholar

  • [19] Karpenko M., Dennehy C. J., Marsh H. C. and Gong Q., “Minimum Power Slews and the James Webb Space Telescope,” 27th AAS/AIAA Space Flight Mechanics Meeting, AAS Paper 17-285, Springfield, VA, Feb. 2017. Google Scholar

  • [20] Karpenko M., Ross I. M., Stoneking E., Lebsock K. and Dennehy C. J., “A Micro-Slew Concept for Precision Pointing of the Kepler Spacecraft,” AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 15-628, Springfield, VA, Aug. 2015. Google Scholar

  • [21] Stevens R. E. and Wiesel W., “Large Time Scale Optimal Control of an Electrodynamic Tether Satellite,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, 2008, pp. 1716–1727. doi:https://doi.org/10.2514/1.34897 LinkGoogle Scholar

  • [22] Gong Q., Kang W., Bedrossian N., Fahroo F., Sekhavat P. and Bollino K., “Pseudospectral Optimal Control for Military and Industrial Applications,” 46th IEEE Conference on Decision and Control, IEEE Publ., Piscataway, NJ, 2007, pp. 4128–4142. Google Scholar

  • [23] Bedrossian N., Bhatt S., Kang W. and Ross I. M., “Zero Propellant Maneuver Guidance,” IEEE Control Systems Magazine, Vol. 29, No. 5, Oct. 2009, pp. 53–73. doi:https://doi.org/10.1109/MCS.2009.934089 ISMAD7 0272-1708 CrossrefGoogle Scholar

  • [24] Bhatt S., Bedrossian N., Longacre K. and Nguyen L., “Optimal Propellant Maneuver Flight Demonstrations on ISS,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2013-5027, 2013. LinkGoogle Scholar

  • [25] Bedrossian N., Karpenko M. and Bhatt S., “Overclock My Satellite: Sophisticated Algorithms Boost Satellite Performance on the Cheap,” IEEE Spectrum Magazine, Vol. 49, No. 11, 2012, pp. 54–62. doi:https://doi.org/10.1109/MSPEC.2012.6341207 CrossrefGoogle Scholar

  • [26] Karpenko M., Bhatt S., Bedrossian N. and Ross I. M., “Flight Implementation of Shortest-Time Maneuvers for Imaging Satellites,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 4, 2014, pp. 1069–1079. doi:https://doi.org/10.2514/1.62867 LinkGoogle Scholar

  • [27] Minelli G., Karpenko M., Ross I. M. and Newman J., “Autonomous Operations of Large-Scale Satellite Constellations and Ground Station Networks,” AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 17-761, Springfield, VA, Aug. 2017. Google Scholar

  • [28] Bedrossian N., Bhatt S., Lammers M. and Nguyen L., “Zero Propellant Maneuver: Flight Results for 180° ISS Rotation,” 20th International Symposium on Space Flight Dynamics, NASA CP-2007-214158, Sept. 2007. Google Scholar

  • [29] Yan H., Gong Q., Park C., Ross I. M. and D'Souza C. N., “High Accuracy Trajectory Optimization for a Trans-Earth Lunar Mission,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 4, 2011, pp. 1219–1227. doi:https://doi.org/10.2514/1.49237 LinkGoogle Scholar

  • [30] Ross I. M., Gong Q., Karpenko M. and Proulx R. J., “Scaling and Balancing for High-Performance Computation of Optimal Controls,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 10, 2018, pp. 2086–2097. LinkGoogle Scholar

  • [31] Ross I. M., Karpenko M. and Proulx R. J., “The Million Point Computational Optimal Control Challenge,” SIAM Conference on Control and Its Applications, MS24, Pittsburgh, PA, July 2017. Google Scholar

  • [32] Ross I. M., Karpenko M. and Proulx R. J., “A Nonsmooth Calculus for Solving Some Graph-Theoretic Control Problems,” IFAC-PapersOnLine, Vol. 49, No. 18, 2016, pp. 462–467. doi:https://doi.org/10.1016/j.ifacol.2016.10.208 CrossrefGoogle Scholar

  • [33] Ross I. M., Proulx R. J., Greenslade J. M. and Karpenko M., “Dynamic Optimization for Satellite Image Collection,” Advances in the Astronautical Sciences: Spaceflight Mechanics, Vol. 158, AAS Paper 16-260, Springfield, VA, 2016, pp. 199–218. Google Scholar

  • [34] Hesthaven J. S., “Integration Preconditioning of Pseudospectral Operators. I. Basic Linear Operators,” SIAM Journal of Numerical Analysis, Vol. 35, No. 4, 1998, pp. 1571–1593. doi:https://doi.org/10.1137/S0036142997319182 CrossrefGoogle Scholar

  • [35] Elbarbary E. M. E., “Integration Preconditioning Matrix for Ultraspherical Pseudospectral Operators,” SIAM Journal of Scientific Computaton, Vol. 28, No. 3, 2006, pp. 1186–1201. doi:https://doi.org/10.1137/050630982 CrossrefGoogle Scholar

  • [36] Wang L.-L., Samson M. D. and Zhao X., “A Well-Conditioned Collocation Method Using a Pseudospectral Integration Matrix,” SIAM Journal of Scientific Computaton, Vol. 36, No. 3, 2014, pp. A907–A929. doi:https://doi.org/10.1137/130922409 CrossrefGoogle Scholar

  • [37] Olver S. and Townsend A., “A Fast and Well-Conditioned Spectral Method,” SIAM Review, Vol. 55, No. 3, 2013, pp. 462–489. doi:https://doi.org/10.1137/120865458 SIREAD 0036-1445 CrossrefGoogle Scholar

  • [38] Du K., “On Well-Conditioned Spectral Collocation and Spectral Methods by the Integral Reformulation,” SIAM Journal of Scientific Computaton, Vol. 38, No. 5, 2016, pp. A3247–A3263. doi:https://doi.org/10.1137/15M1046629 CrossrefGoogle Scholar

  • [39] Ross I. M., A Primer on Pontryagin’s Principle in Optimal Control, 2nd ed., Collegiate Publ., San Francisco, CA, 2015. Google Scholar

  • [40] Longuski J. M., Guzmán J. J. and Prussing J. E., Optimal Control with Aerospace Applications, Springer, New York, 2014. CrossrefGoogle Scholar

  • [41] Clarke F., Functional Analysis, Calculus of Variations and Optimal Control, Springer–Verlag, London, 2013, Chap. 22. CrossrefGoogle Scholar

  • [42] Fahroo F. and Ross I. M., “Advances in Pseudospectral Methods for Optimal Control,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2008-7309, Aug. 2008. LinkGoogle Scholar

  • [43] Tao T., An Epsilon of Room, Vol. I, American Mathematical Soc., Providence, RI, 2010, Chap. 1. Google Scholar

  • [44] Gong Q., Ross I. M. and Fahroo F., “Pseudospectral Optimal Control on Arbitrary Grids,” AAS Astrodynamics Specialist Conference, AAS Paper 09-405, Springfield, VA, 2009. Google Scholar

  • [45] Gong Q., Ross I. M. and Fahroo F., “Spectral and Pseudospectral Optimal Control over Arbitrary Grids,” Journal of Optimization Theory and Applications, Vol. 169, No. 3, 2016, pp. 759–783. doi:https://doi.org/10.1007/s10957-016-0909-y JOTABN 0022-3239 CrossrefGoogle Scholar

  • [46] Hager W. W., “Runge–Kutta Discretizations of Optimal Control Problems,” System Theory: Modeling Analysis and Control, edited by Djaferis T. E. and Schick I. C., Springer, New York, 2000, pp. 233–244. CrossrefGoogle Scholar

  • [47] Ross I. M., Gong Q. and Sekhavat P., “Low-Thrust, High-Accuracy Trajectory Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 4, 2007, pp. 921–933. doi:https://doi.org/10.2514/1.23181 LinkGoogle Scholar

  • [48] Ross I. M., Gong Q. and Sekhavat P., “The Bellman Pseudospectral Method,” AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA Paper 2008-6448, Aug. 2008. LinkGoogle Scholar

  • [49] Kosloff D. and Tal-Ezer H., “A Modified Chebyshev Pseudospectral Method With an O(N1) Time Step Restriction,” Journal of Computational Physics, Vol. 104, No. 2, 1993, pp. 457–469. doi:https://doi.org/10.1006/jcph.1993.1044 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [50] Ross I. M., Fahroo F. and Strizzi J., “Adaptive Grids for Trajectory Optimization by Pseudospectral Methods,” AAS/AIAA Spaceflight Mechanics Conference, AAS Paper 03-142, Springfield, VA, Feb. 2003. Google Scholar

  • [51] Lorentz G. G. and Zeller K. L., “Birkhoff Interpolation,” SIAM Journal on Numerical Analysis, Vol. 8, No. 1, 1971, pp. 43–48. doi:https://doi.org/10.1137/0708006 CrossrefGoogle Scholar

  • [52] Schoenberg I. J., “On Hermite-Birkhoff Interpolation,” Journal of Mathematical Analysis and Applications, Vol. 16, No. 3, 1966, pp. 538–543. doi:https://doi.org/10.1016/0022-247X(66)90160-0 JMANAK 0022-247X CrossrefGoogle Scholar

  • [53] Finden W. F., “An Error Term and Uniqueness for Hermite-Birkhoff Interpolation Involving Only Function Values and/or First Derivative Values,” Journal of Computational and Applied Mathematics, Vol. 212, No. 1, 2008, pp. 1–15. doi:https://doi.org/10.1016/j.cam.2006.11.022 JCAMDI 0377-0427 CrossrefGoogle Scholar

  • [54] Koeppen N., “Well-Conditioned Pseudospectral Optimal Control Methods and Their Applications,” M.S. Thesis, Naval Postgraduate School, Monterey, CA, June 2018. Google Scholar

  • [55] Fahroo F. and Ross I. M., “Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems,” AIAA Guidance, Navigation and Control Conference, AIAA Paper 2005-6076, Aug. 2005. LinkGoogle Scholar

  • [56] Fahroo F. and Ross I. M., “Pseudospectral Methods for Infinite-Horizon Optimal Control Problems,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 4, 2008, pp. 927–936. doi:https://doi.org/10.2514/1.33117 LinkGoogle Scholar

  • [57] Conway B. A., “The Problem of Space Trajectory Optimization,” Space Trajectory Optimization, edited by Conway B. A., Vol. 29, Cambridge Aerospace Series, Cambridge, MA, 2010, pp. 1–15. CrossrefGoogle Scholar