Skip to main content
Skip to article control options
No AccessEngineering Notes

Detumbling Attitude Control Analysis Considering an Electrostatic Pusher Configuration

Published Online:
Free first page


  • [1] Liou J.-C., Johnson N. and Hill N., “Controlling the Growth of Future LEO Debris Populations with Active Debris Removal,” Acta Astronautica, Vol. 66, Nos. 5–6, 2010, pp. 648–653. doi: AASTCF 0094-5765 CrossrefGoogle Scholar

  • [2] Oltrogge D. L., Alfano S., Law C., Cacioni A. and Kelso T. S., “A Comprehensive Assessment of Collision Likelihood in Geosynchronous Earth Orbit,” Acta Astronautica, Vol. 147, June 2018, pp. 316–345. doi: Google Scholar

  • [3] Anderson P. V. and Schaub H., “Local Debris Congestion in the Geosynchronous Environment with Population Augmentation,” Acta Astronautica, Vol. 94, No. 2, Feb. 2014, pp. 619–628. doi: AASTCF 0094-5765 CrossrefGoogle Scholar

  • [4] Binz C. R., Davis M. A., Kelm B. E. and Moore C. I., “Optical Survey of the Tumble Rates of Retired GEO Satellites,” Advanced Maui Optical and Space Surveillance Technologies Conference, Vol. 1, 2014, p. 61. Google Scholar

  • [5] Bombardelli C. and Pelaez J., “Ion Beam Shepherd for Contactless Space Debris Removal,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 3, May–June 2011, pp. 916–920. doi: JGCODS 0731-5090 LinkGoogle Scholar

  • [6] Kumar R. and Sedwick R. J., “Despinning Orbital Debris Before Docking Using Laser Ablation,” Journal of Spacecraft and Rockets, Vol. 52, No. 4, 2015, pp. 1129–1134. doi: JSCRAG 0022-4650 LinkGoogle Scholar

  • [7] Schaub H. and Moorer D. F., “Geosynchronous Large Debris Reorbiter: Challenges and Prospects,” Journal of the Astronautical Sciences, Vol. 59, Nos. 1–2, 2014, pp. 161–176. doi:–10.1007/s40295-013-0011–8 CrossrefGoogle Scholar

  • [8] Stevenson D., “Remote Spacecraft Attitude Control by Coulomb Charging,” Ph.D. Dissertation, Aerospace Engineering Sciences Dept., Univ. of Colorado, Boulder, CO, May 2015. Google Scholar

  • [9] Shibata T., Bennett T. and Schaub H., “Prospects of a Hybrid Magnetic/Electrostatic Sample Container Retriever,” 9th International Workshop on Satellite Constellations and Formation Flying, Paper IWSCFF 17-15, Boulder, CO, June 2017. Google Scholar

  • [10] Hogan E. and Schaub H., “Relative Motion Control for Two-Spacecraft Electrostatic Orbit Corrections,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 1, Jan.–Feb. 2013, pp. 240–249. doi: JGCODS 0731-5090 LinkGoogle Scholar

  • [11] Bennett T. and Schaub H., “Touchless Electrostatic Detumble Of A Representative Box-And-Panel Spacecraft Configuration,” European Conference on Space Debris, ESOC, Darmstadt, Germany, April 2017. Google Scholar

  • [12] Mullen E. G., Gussenhoven M. S., Hardy D. A., Aggson T. A. and Ledley B. G., “SCATHA Survey of High-Voltage Spacecraft Charging in Sunlight,” Journal of Geophysical Research, Vol. 91, No. A2, 1986, pp. 1474–1490. doi: JGREA2 0148-0227 CrossrefGoogle Scholar

  • [13] Fennell J. F. and Roeder J. L., “HEO Satellite Surface and Frame Charging and SCATHA Low-Level Frame Charging,” The Aerospace Corporation TR-2007(8570)-1, El Segundo, CA, Nov. 2007. CrossrefGoogle Scholar

  • [14] Fennell J. F., Koons H. C., Leung M. S. and Mizera P. F., “A Review of SCATHA Satellite Results: Charging and Discharging,” Space Division Air Force Systems Command, Los Angeles Air Force Station TR SD-TR-85-27, Los Angeles, CA, Aug. 1985. Google Scholar

  • [15] Olsen R. C. and Whipple E. C., “Analysis of Differential and Active Charging Phenomena on ATS-5 and ATS-6,” NASA TR NASA-CP-163433, 1980. Google Scholar

  • [16] Whipple E. C. and Olsen R. C., “Importance of Differential Charging for Controlling Both Natural, and Induced Vehicle Potentials on ATS-5, and ATS-6,” Proceedings of the 3rd Spacecraft Charging Technology Conference, NASA CP 2182, Nov. 1980, pp. 887–893. Google Scholar

  • [17] Stevenson D. and Schaub H., “Multi-Sphere Method for Modeling Electrostatic Forces and Torques,” Advances in Space Research, Vol. 51, No. 1, Jan. 2013, pp. 10–20. doi: ASRSDW 0273-1177 CrossrefGoogle Scholar

  • [18] Stevenson D. and Schaub H., “Optimization of Sphere Population for Electrostatic Multi Sphere Model,” IEEE Transactions on Plasma Science, Vol. 41, No. 12, Dec. 2013, pp. 3526–3535. doi: ITPSBD 0093-3813 CrossrefGoogle Scholar

  • [19] Chow P., Hughes J., Bennett T. and Schaub H., “Automated Sphere Geometry Optimization for the Volume Multi-Sphere Method,” AAS/AIAA Spaceflight Mechanics Meeting, AAS Paper 16-472, Napa Valley, CA, Feb. 2016, pp. 2223–2240. Google Scholar

  • [20] Ingram G., Hughes J., Bennett T., Reilly C. and Schaub H., “Autonomous Volume Multi-Sphere-Model Development Using Electric Field Matching,” AAS Spaceflight Mechanics Meeting, AAS Paper 17-451, San Antonio, TX, Feb. 2017. Google Scholar

  • [21] Smythe W. R., Static and Dynamic Electricity, 3rd ed., McGraw–Hill, 1968, Chap. 2. Google Scholar

  • [22] Zhang F., The Schur Complement and Its Applications, Springer, Boston, MA, 2005, Chap. 1. CrossrefGoogle Scholar

  • [23] Wolfram S., The Mathematica Book, 5th ed., Cambridge Univ. Press, Cambridge, England, U.K., 2003. Google Scholar

  • [24] Alfriend K. T., Vadali S. R., Gurfil P., How J. P. and Breger L. S., “Linear Equations of Relative Motion,” Spacecraft Formation Flying, Butterworth-Heinemann, Oxford, England, U.K., 2010, pp. 83–121. doi: CrossrefGoogle Scholar

  • [25] Hogan E. A. and Schaub H., “Attitude Parameter Inspired Relative Motion Descriptions for Relative Orbital Motion Control,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 3, 2014, pp. 741–749. doi: JGCODS 0731-5090 LinkGoogle Scholar

  • [26] Aslanov V. S. and Yudintsev V. V., “Motion Control of Space Tug During Debris Removal by a Coulomb Force,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 7, March 2018, pp. 1476–1484. doi: JGCODS 0731-5090 LinkGoogle Scholar

  • [27] Schaub H. and Stevenson D., “Prospects of Relative Attitude Control Using Coulomb Actuation,” Journal of Astronautical Sciences, Vol. 60, No. 3, 2013, pp. 258–277. doi: CrossrefGoogle Scholar