Autonomous Optical Navigation for the Lunar Meteoroid Impacts Observer
References
[1] , “CubeSat Evolution: Analyzing CubeSat Capabilities for Conducting Science Missions,” Progress in Aerospace Sciences, Vol. 88, Jan. 2017, pp. 59–83. doi:https://doi.org/10.1016/j.paerosci.2016.11.002 PAESD6 0376-0421
[2] , Radiometric Tracking Techniques for Deep Space Navigation, Wiley, New York, 2003, Chap. 2. doi:https://doi.org/10.1002/0471728454
[3] , “Guidance, Navigation, and Control Technology Assessment for Future Planetary Science Missions,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 7, 2015, pp. 1165–1186. doi:https://doi.org/10.2514/1.G000525 JGCODS 0731-5090
[4] , “LUMIO: a Cubesat at Earth-Moon L2,” 4S Symposium, Sorrento, Italy, May–June 2018, pp. 1–15. http://hdl.handle.net/11311/1055454.
[5] , “LUMIO: Achieving Autonomous Operations for Lunar Exploration with a CubeSat,” 2018 SpaceOps Conference, Marseille, France, May–June 2018, pp. 2599. doi:https://doi.org/10.2514/6.2018-2599
[6] , “Autonomous Optical Navigation for LUMIO Mission,” 2018 Space Flight Mechanics Meeting, AIAA SciTech Forum, AIAA Paper 2018-1977, 2018. doi:https://doi.org/10.2514/6.2018-1977
[7] , “Orion Optical Navigation Progress Toward Exploration Mission 1,” 2018 Space Flight Mechanics Meeting, AIAA SciTech Forum, AIAA Paper 2018-1978, 2018. doi:https://doi.org/10.2514/6.2018-1978
[8] , “Noniterative Horizon-Based Optical Navigation by Cholesky Factorization,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 12, 2016, pp. 2757–2765. doi:https://doi.org/10.2514/1.G000539 JGCODS 0731-5090
[9] , “Orbit Design for LUMIO: The Lunar Meteoroid Impacts Observer,” Frontiers in Astronomy and Space Sciences, Vol. 5, Sept. 2018, pp. 1–23. doi:https://doi.org/10.3389/fspas.2018.00029
[10] , “Spacecraft Navigation Using X-Ray Pulsars,” Journal of Guidance, Control, and Dynamics, Vol. 29, No. 1, 2006, pp. 49–63. doi:https://doi.org/10.2514/1.13331 JGCODS 0731-5090
[11] , “Validation of Pulsar Phase Tracking for Spacecraft Navigation,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 10, 2015, pp. 1885–1897. doi:https://doi.org/10.2514/1.G000789 JGCODS 0731-5090
[12] , “Interplanetary Autonomous Navigation Using Visible Planets,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 6, 2015, pp. 1151–1156. doi:https://doi.org/10.2514/1.G000575 JGCODS 0731-5090
[13] , “Single-Point Position Estimation in Interplanetary Trajectories Using Star Trackers,” Advances in the Astronautical Sciences, Vol. 156, No. 1, 2016, pp. 1909–1926. doi:https://doi.org/10.1007/s10569-016-9738-4
[14] , “Optical Navigation Using Iterative Horizon Reprojection,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 5, 2016, pp. 1092–1103. doi:https://doi.org/10.2514/1.G001569 JGCODS 0731-5090
[15] , “Image Processing of Illuminated Ellipsoid,” Journal of Spacecraft and Rockets, Vol. 53, No. 3, 2016, pp. 448–456. doi:https://doi.org/10.2514/1.A33342 JSCRAG 0022-4650
[16] , “Centroiding and Sizing Optimization of Ellipsoid Image Processing Using Nonlinear Least-Squares,” 2018 AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 18-229, Springfield, VA, 2018.
[17] , “Accurate Planetary Limb Localization for Image-Based Spacecraft Navigation,” Journal of Spacecraft and Rockets, Vol. 54, No. 3, 2017, pp. 708–730. doi:https://doi.org/10.2514/1.A33692 JSCRAG 0022-4650
[18] , “Ancillary Data Services of NASA’s Navigation and Ancillary Information Facility,” Planetary and Space Science, Vol. 44, No. 1, SPEC. ISS., 1996, pp. 65–70. doi:https://doi.org/10.1016/0032-0633(95)00107-7 PLSSAE 0032-0633
[19] , “A Look Towards the Future in the Handling of Space Science Mission Geometry,” Planetary and Space Science, Vol. 150, Feb. 2017, 2018, pp. 9–12. doi:https://doi.org/10.1016/j.pss.2017.02.013 PLSSAE 0032-0633
[20] , “A Computational Approach to Edge Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, No. 6, 1986, pp. 679–698. doi:https://doi.org/10.1109/TPAMI.1986.4767851 ITPIDJ 0162-8828
[21] , Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, Wiley, New York, 2006, Chap. 13.
[22] , “Trajectory Refinement of Three-Body Orbits in the Real Solar System Model,” Advances in Space Research, Vol. 59, No. 8, 2017, pp. 2117–2132. doi:https://doi.org/10.1016/j.asr.2017.01.039 ASRSDW 0273-1177
[23] , “Parametric Covariance Model for Horizon-Based Optical Navigation,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 1, 2017, pp. 170–178. doi:https://doi.org/10.2514/1.G000708 JGCODS 0731-5090
[24] , “Autonomous Optical Navigation Using Nanosatellite-Class Instruments: a Mars Approach Case Study,” Celestial Mechanics and Dynamical Astronomy, Vol. 130, No. 2, 2018, pp. 1–31. doi:https://doi.org/10.1007/s10569-017-9800-x