Skip to main content

IMPORTANT NOTICE: The ARC website is being updated on Tuesday, May 28, 2024. ARC will be in a "Read Only" mode. Viewing and downloading content will be available but other functions are restricted. For further inquiries, please contact [email protected].

Skip to article control options
No AccessFull-Length Papers

Angles-Only Navigation in the Proximity of a Binary Asteroid System

Published Online:https://doi.org/10.2514/1.G004355

This paper investigates the possibility to navigate one or more spacecraft in the proximity of an asteroid binary system using only optical measurements. The approach proposed in this paper assumes only limited prior knowledge of the shape and orbital parameters of the two asteroids. In particular it is shown that the knowledge of the semimajor axis of the orbit of the secondary with respect to the primary is critical to guarantee a sufficient level of navigation accuracy. A method is proposed to allow for the inclusion of the orbital parameters of the secondary asteroid in the estimation process. It is shown that the inclusion of the estimation of the orbital parameters of the secondary provides the required information to allow navigating in the proximity of the binary system at the Lagrange point L4. The paper then demonstrates that the same method can be used to navigate a small formation of two spacecraft at L4 provided that intersatellite position and velocity vectors can be measured with sufficient accuracy. In this case the formation can be controlled even if the optical sensor onboard one of the spacecraft partially fails.

References

  • [1] Coradini A., Turrini D., Federico C. and Magni G., “Vesta and Ceres: Crossing the History of the Solar System,” Space Science Reviews, Vol. 163, No. 1, 2011, pp. 25–40. https://doi.org/10.1007/s11214-011-9792-x Google Scholar

  • [2] Margot J. L., Nolan M. C., Benner L. A. M., Ostro S. J., Jurgens R. F., Giorgini J. D., Slade M. A. and Campbell D. B., “Binary Asteroids in the Near-Earth Object Population,” Science, Vol. 296, No. 5572, 2002, pp. 1445–1448. https://doi.org/10.1126/science.1072094 CrossrefGoogle Scholar

  • [3] Cheng A., Rivkin A., Michel P., Lisse C., Walsh K., Ragozzine D., Chapman C., Merline W. and Benner L., “Binary and Multiple Systems,” 2009, https://solarsystem.nasa.gov/studies/84/binary-and-multiple-systems/. Google Scholar

  • [4] Champetier C., Regnier P., Serrano J. and De Lafontaine J., “Evaluation of Autonomous GNC Strategies for the Roseti a Interplanetary Mission,” IFAC Proceedings Volumes, Vol. 25, No. 22, 1992, pp. 339–353. https://doi.org/10.1016/S1474-6670(17)49672-8 Google Scholar

  • [5] De Lafontaine J., “Autonomous Spacecraft Navigation and Control for Comet Landing,” Journal of Guidance, Control, and Dynamics, Vol. 15, No. 3, 1992, pp. 567–576. https://doi.org/10.2514/3.20877. LinkGoogle Scholar

  • [6] Kawaguchi J. I., Hashimoto T., Kubota T., Sawai S. and Fujii G., “Autonomous Optical Guidance and Navigation Strategy Around a Small Body,” Journal of Guidance, Control, and Dynamics, Vol. 20, No. 5, 1997, pp. 1010–1017. https://doi.org/10.2514/2.4148 LinkGoogle Scholar

  • [7] Owen W. M., Wang T. C., Harch A., Bell M. and Peterson C., “NEAR Optical Navigation at Eros,” AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 01-1429, San Diego, CA, July–Aug. 2001. Google Scholar

  • [8] Getzandanner K. M., “Navigation Strategies for Primitive Solar System Body Rendezvous and Proximity Operations,” 22nd International Symposium on Space Flight Dynamics, São José dos Campos, Brazil, Feb.–March 2011. Google Scholar

  • [9] Scheeres D., “Close Proximity Operations for Implementing Mitigation Strategies,” 2004 Planetary Defense Conference: Protecting Earth from Asteroids, AIAA Paper 2004-1445, 2004. Google Scholar

  • [10] Broschart S. B. and Scheeres D. J., “Control of Hovering Spacecraft near Small Bodies: Application to Asteroid 25143 Itokawa,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 2, 2005, pp. 343–354. https://doi.org/10.2514/1.3890 LinkGoogle Scholar

  • [11] Li W. and Jia Y., “H-Infinity Filtering for a Class of Nonlinear Discrete-Time Systems Based on Unscented Transform,” Signal Processing, Vol. 90, No. 12, 2010, pp. 3301–3307. https://doi.org/10.1016/j.sigpro.2010.05.023 Google Scholar

  • [12] Llanos P. J., Di Domenico M. and Gil-Fernandez J., “Advanced GNC Technologies for Proximity Operations in Missions to Small Bodies,” AAS Guidance and Control Conference, AAS Paper 03-092, San Diego, CA, Feb. 2013. Google Scholar

  • [13] Jiang X., Tao T., Yang W. and Li S., “GNC Schemes Design for Future China Asteroid Exploration,” IEEE 34th Chinese Control Conference (CCC), Inst. of Electrical and Electronics Engineers, New York, July 2015. https://doi.org/10.1109/ChiCC.2015.7260458 Google Scholar

  • [14] Hesar S., Parker J. S., Mcmahon J. and Born G., “Small Body Gravity Field Estimation Using LIAISON Suplemented Optical Navigation,” 38th Annual AAS Rocky Mountain Section Guidance and Control Conference, AAS Paper 15-024, San Diego, CA, Jan.–Feb. 2015. Google Scholar

  • [15] Fujimoto K., Stacey N. and Turner J. M., “Stereoscopic Image Velocimetry as a Measurement Type for Autonomous Asteroid Gravimetry,” AIAA Paper 2016-5566, 2016. Google Scholar

  • [16] Vetrisano M. and Vasile M., “Autonomous Navigation of a Spacecraft Formation in the Proximity of an Asteroid,” Advances in Space Research, Vol. 57, No. 8, 2016, pp. 1783–1804. https://doi.org/10.1016/j.asr.2015.07.024 CrossrefGoogle Scholar

  • [17] Torre F., Vasile M., Serra R. and Grey S., “Autonomous Navigation of a Formation of Spacecraft in the Proximity of a Binary Asteroid,” ISTS-2017-d-041/ISSFD-2017-041, International Symposium on Space Technology and Science, Matsuyama, Japan, June 2017. Google Scholar

  • [18] Stacey N. and D’Amico S., “Autonomous Swarming for Simultaneous Navigation and Asteroid Characterization,” 2018 AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 18-448, San Diego, CA, Aug. 2018. Google Scholar

  • [19] Christian J. A. and Lightsey G. E., “Onboard Image-Processing Algorithm for a Spacecraft Optical Navigation Sensor System,” Journal of Spacecraft and Rockets, Vol. 49, No. 2, 2012, pp. 337–352. https://doi.org/10.2514/1.A32065 LinkGoogle Scholar

  • [20] Bhaskaran S. and Kennedy B., “Terminal Guidance Navigation for an Asteroid Impactor Spacecraft,” 23rd AAS/AIAA Spaceflight Mechanics Meeting, AAS Paper 13-0547, San Diego, CA, Feb. 2013, http://hdl.handle.net/2014/44056. Google Scholar

  • [21] Yang H., Yang X. and Zhang W., “State Estimation of Spacecraft Formation near Small Asteroid,” Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference, Inst. of Electrical and Electronics Engineers, New York, 2014, pp. 55–60. https://doi.org/10.1109/CGNCC.2014.7007219 Google Scholar

  • [22] Gil-Fernandez J. and Ortega-Hernando G., “Autonomous Vision-Based Navigation for Proximity Operations Around Binary Asteroids,” CEAS Space Journal, Vol. 10, No. 2, 2018, pp. 287–294. https://doi.org/10.1007/s12567-018-0197-5 CrossrefGoogle Scholar

  • [23] Stastny N. B. and Geller D. K., “Autonomous Optical Navigation at Jupiter: A Linear Covariance Analysis,” Journal of Spacecraft and Rockets, Vol. 45, No. 2, 2008, pp. 290–298. https://doi.org/10.2514/1.28451 LinkGoogle Scholar

  • [24] Manghi R. L., Modenini D., Zannoni M. and Tortora P., “Preliminary Orbital Analysis for a CubeSat Mission to the Didymos Binary Asteroid System,” Advances in Space Research, Vol. 62, No. 8, 2018, pp. 2290–2305. https://doi.org/10.1016/j.asr.2017.12.014 Google Scholar

  • [25] Vetrisano M., Colombo C. and Vasile M., “Asteroid Rotation and Orbit Control via Laser Ablation,” Advances in Space Research, Vol. 57, No. 8, 2016, pp. 1762–1782. https://doi.org/10.1016/j.asr.2015.06.035 CrossrefGoogle Scholar

  • [26] Torre F., Serra R., Grey S. and Vasile M., “Angles-Only Navigation of a Formation in the Proximity of a Binary System,” AIAA SciTech Forum, AIAA Paper 2018-1976, 2018. https://doi.org/10.2514/6.2018-1976 Google Scholar

  • [27] Thiry N. and Vasile M., “Binary Asteroid Manipulation with Laser Ablation,” HPLA/DE, Santa Fe, NM, April 2016. Google Scholar

  • [28] Vasile M. and Thiry N., “LightTouch3: A Demo Mission to Test Laser Ablation For Asteroid Manipulation and Exploitation,” 15th Reinventing Space Conference, BIS, Glasgow, Scotland, U.K., Oct. 2017. Google Scholar

  • [29] Scheeres D. J., “Orbit Mechanics About Asteroids and Comets,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 3, 2012, pp. 987–997. https://doi.org/10.2514/1.57247 LinkGoogle Scholar

  • [30] Hu W. and Scheeres D. J., “Spacecraft Motion About Slowly Rotating Asteroids,” Journal of Guidance, Control, and Dynamics, Vol. 25, No. 4, 2002, pp. 765–775. https://doi.org/10.2514/2.4944 LinkGoogle Scholar

  • [31] Li S., Cui P. Y. and Cui H. T., “Vision-Aided Inertial Navigation for Pinpoint Planetary Landing,” Aerospace Science and Technology, Vol. 11, No. 6, 2007, pp. 499–506. https://doi.org/10.1016/j.ast.2007.04.006 CrossrefGoogle Scholar

  • [32] Thevenet J.-B. and Grelier T., “Formation Flying Radio-Frequency Metrology Validation and Performance: The PRISMA Case,” Acta Astronautica, Vol. 82, No. 1, 2013, pp. 2–15. https://doi.org/10.1016/j.actaastro.2012.07.034 Google Scholar

  • [33] Vasile M., Torre F., Serra R. and Grey S., “Autonomous Orbit Determination for Formations of Cubesats Beyond LEO,” Acta Astronautica, Vol. 153, Dec. 2018, pp. 327–336. https://doi.org/10.1016/j.actaastro.2018.01.045 Google Scholar

  • [34] Alonso R., Du J. and Hughes Y., “Relative Navigation for Formation Flying of Spacecraft,” Proceedings of the Flight Mechanics Symposium, NASA-Goddard Space Flight Center, Greenbelt, MD, 2001, pp. 115–129. Google Scholar

  • [35] Julier S. J., Uhlmann J. K. and Durrant-Whyte H. F., “A New Approach for Filtering Nonlinear Systems,” American Control Conference, Inst. of Electrical and Electronics Engineers, New York, 1995, pp. 1628–1632. Google Scholar

  • [36] Michel P., Cheng A., Küppers M., Pravec P., Blum J., Delbo M., Green S. F., Rosenblatt P., Tsiganis K., Vincent J. B. and Biele J., “Science Case for the Asteroid Impact Mission (AIM): A Component of the Asteroid Impact & Deflection Assessment (AIDA) Mission,” Advances in Space Research, Vol. 57, No. 12, 2016, pp. 2529–2547. https://doi.org/10.1016/j.asr.2016.03.031 CrossrefGoogle Scholar