Skip to main content

PLEASE NOTE: We are currently experiencing issues with articles from the AIAA Journal not adding to our shopping cart (for transactional sales of individual articles only). This ONLY affects the AIAA Journal. All other journal titles should work as expected. We apologize for this inconvenience. Please contact [email protected] for help with any urgent article requests. Thank you.

No AccessFull-Length Papers

QuateRA: The Quaternion Regression Algorithm

Published Online:https://doi.org/10.2514/1.G004375

This work proposes a batch solution to the problem of estimating fixed angular velocity using orientation measurements. Provided that the angular velocity remains constant with time, it is shown that the orientation quaternion belongs to a constant plane of rotation as time evolves. Motivated by this fundamental property, the angular velocity’s direction can be determined by estimating the quaternion plane of rotation. Under the small angle assumption on the attitude measurement noise, the plane of rotation is estimated by minimizing a constrained total least-squares cost function, and the proposed algorithm produces a unique optimizing solution through a batch approach (no need for iterations). The angular velocity magnitude is estimated by projecting the measured quaternions onto the estimated plane of rotation, and then computing the least-squares evolution of the quaternion angle in the plane. A Monte Carlo analysis of the proposed algorithm is performed, validating the method and comparing it with a multiplicative extended Kalman Filter, which is a traditional method in the literature.

References

  • [1] Bar-Shalom Y., Li X. R. and Kirubarajan T., Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software, Wiley, Hoboken, NJ, 2004. https://doi.org/10.1002/0471221279 CrossrefGoogle Scholar

  • [2] Salcudean S., “A Globally Convergent Angular Velocity Observer for Rigid Body Motion,” IEEE Transactions on Automatic Control, Vol. 36, No. 12, 1991, pp. 1493–1497. https://doi.org/10.1109/9.106169 CrossrefGoogle Scholar

  • [3] Oshman Y. and Dellus F., “Spacecraft Angular Velocity Estimation Using Sequential Observations of a Single Directional Vector,” Journal of Spacecraft and Rockets, Vol. 40, No. 2, 2003, pp. 237–247. https://doi.org/10.2514/2.3938 LinkGoogle Scholar

  • [4] Bar-Itzhack I. Y., “Classification of Algorithms for Angular Velocity Estimation,” Journal of Guidance, Control, and Dynamics, Vol. 24, No. 2, 2001, pp. 214–218. https://doi.org/10.2514/2.4731 LinkGoogle Scholar

  • [5] Bar-Itzhack I. Y., Harman R. R. and Thienel J. K., “Rigid Body Rate Inference from Attitude Variation,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 1, 2007, pp. 275–281. https://doi.org/10.2514/1.23955 LinkGoogle Scholar

  • [6] Psiaki M. L., “Generalized Wahba Problems for Spinning Spacecraft Attitude and Rate Determination,” Journal of the Astronautical Sciences, Vol. 57, Nos. 1–2, 2009, pp. 73–92. https://doi.org/10.1007/BF03321495. CrossrefGoogle Scholar

  • [7] Markley F. L. and Mortari D., “Quaternion Attitude Estimation Using Vector Observations,” Journal of the Astronautical Sciences, Vol. 48, No. 2, 2000, pp. 359–380. CrossrefGoogle Scholar

  • [8] Saunderson J., Parrilo P. A. and Willsky A. S., “Convex Solution to a Joint Attitude and Spin-Rate Estimation Problem,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 1, 2015, pp. 118–127. https://doi.org/10.2514/1.G001107 LinkGoogle Scholar

  • [9] Hinks J. C. and Psiaki M. L., “Solution Strategies for an Extension of Wahba’s Problem to a Spinning Spacecraft,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 6, 2011, pp. 1734–1745. https://doi.org/10.2514/1.53530 LinkGoogle Scholar

  • [10] Psiaki M. L. and Hinks J. C., “Numerical Solution of a Generalized Wahba Problem for a Spinning Spacecraft,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 3, 2012, pp. 764–773. https://doi.org/10.2514/1.56151 LinkGoogle Scholar

  • [11] Lefferts E. J., Markley F. L. and Shuster M. D., “Kalman Filtering for Spacecraft Attitude Estimation,” Journal of Guidance, Control, and Dynamics, Vol. 5, No. 5, 1982, pp. 417–429. https://doi.org/10.2514/3.56190 LinkGoogle Scholar

  • [12] Gai E., Daly K., Harrison J. and Lemos L., “Star-Sensor-Based Satellite Attitude/Attitude Rate Estimator,” Journal of Guidance, Control, and Dynamics, Vol. 8, No. 5, 1985, pp. 560–565. https://doi.org/10.2514/3.56393 LinkGoogle Scholar

  • [13] Markley F. L., “Attitude Error Representations for Kalman Filtering,” Journal of Guidance, Control, and Dynamics, Vol. 26, No. 2, 2003, pp. 311–317. https://doi.org/10.2514/2.5048 LinkGoogle Scholar

  • [14] Psiaki M. L., “Backward-Smoothing Extended Kalman Filter,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 5, 2005, pp. 885–894. https://doi.org/10.2514/1.12108 LinkGoogle Scholar

  • [15] Mortari D. and Akella M., “Discrete and Continuous Time Adaptive Angular Velocity Estimators,” Proceedings of the AAS/AIAA Space Flight Mechanics Conference, Vol. 155, Williamsburg, VA, Jan. 2015. Google Scholar

  • [16] Lerner G. M., “Three-Axis Attitude Determination,” Spacecraft Attitude Determination and Control, Vol. 73, Springer, New York, 1978, pp. 420–428. Google Scholar

  • [17] Markley F. L., Cheng Y., Crassidis J. L. and Oshman Y., “Averaging Quaternions,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 4, 2007, pp. 1193–1197. https://doi.org/10.2514/1.28949 LinkGoogle Scholar

  • [18] Almeida M. and Akella M., “Discrete Adaptive Angular Velocity Estimation—An Experimental Analysis,” 2016 Space Flight Mechanics Meeting, Vol. 158, Advances in the Astronautical Sciences series, Univelt, Inc., Feb. 2016. Google Scholar

  • [19] Almeida M., Zanetti R., Mortari D. and Akella M., “Real-Time Angular Velocity Estimation of Non-Cooperative Space Objects Using Camera Measurements,” 2018 AAS/AIAA Astrodynamics Specialist Conference, Vol. 167, Advances in the Astronautical Sciences series, Univelt, Inc., Aug. 2018. Google Scholar

  • [20] Mortari D. and Majji M., “Multiplicative Measurement Model,” Journal of the Astronautical Sciences, Vol. 57, Nos. 1–2, 2009, pp. 47–60. https://doi.org/10.1007/BF03321493 CrossrefGoogle Scholar

  • [21] Crassidis J. L. and Cheng Y., “Error-Covariance Analysis of the Total Least-Squares Problem,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 4, 2014, pp. 1053–1063. https://doi.org/10.2514/1.62959 LinkGoogle Scholar

  • [22] Van Huffel S. and Vandewalle J., The Total Least Squares Problem: Computational Aspects and Analysis, Vol. 9, SIAM, Philadelphia, 1991. https://doi.org/10.2307/2670017 CrossrefGoogle Scholar

  • [23] Späth H., “Orthogonal Least Squares Fitting with Linear Manifolds,” Numerische Mathematik, Vol. 48, No. 4, 1986, pp. 441–445. https://doi.org/10.1007/BF01389650 Google Scholar

  • [24] Huffel S. V. and Vandewalle J., “Analysis and Properties of the Generalized Total Least Squares Problem AX=B When Some or All Columns in A Are Subject to Error,” SIAM Journal on Matrix Analysis and Applications, Vol. 10, No. 3, 1989, pp. 294–315. https://doi.org/10.1137/0610023 Google Scholar

  • [25] MATLAB, Software Package, Ver. 2019a, MathWorks, Natick, MA, 2019. Google Scholar

  • [26] fmincon: Find Minimum of Constrained Nonlinear Multivariable Function,” Help Center: Documentation (online database), MathWorks, Natick, MA, 2019, https://www.mathworks.com/help/optim/ug/fmincon.html [retrieved 4 Dec. 2019]. Google Scholar

  • [27] Cundy H. and Rollett A., “Sphere and Cylinder––Archimedes’ Theorem,” Mathematical Models, Tarquin, St. Albans, England, U.K., 1989, pp. 172–173. Google Scholar

  • [28] Weisstein E. W., “Sphere Point Picking,” Wolfram MathWorld (online database), Wolfram Research, Champaign, IL, 2018, http://mathworld.wolfram.com/SpherePointPicking.html [retrieved 8 Aug. 2018]. Google Scholar