Skip to main content
Skip to article control options
No AccessFull-Length Papers

Space Debris Attitude Control During Contactless Transportation in Planar Case

Published Online:

The use of ion flow for the implementation of contactless force action transmission from an active spacecraft to a passive object is a promising technology for the creation of active large space debris removal systems. Keeping a certain orientation of large space debris with respect to the oncoming ion stream in the process of its removal from the orbit can significantly reduce the time for this transport operation. The aim of the work is to develop a control law that stabilizes the space debris in a certain position. A cylindrical spent rocket stage is considered as the space debris. The planar motion of a mechanical system consisting of the active spacecraft and the space debris is considered. The two ways to control the ion flux are considered and compared with each other: by changing the thrust of the ion engine and by turning the ion flow direction. Lyapunov’s theorems on stability and asymptotic stability in the first approximation and Bellman method are used to build the control laws. The results of numerical simulation prove that controlling the ion flow direction is a more efficient way of stabilizing attitude motion in terms of minimizing the time spent.


  • [1] Shan M., Guo J. and Gill E., “Review and Comparison of Active Space Debris Capturing and Removal Methods,” Progress in Aerospace Sciences, Vol. 80, Jan. 2016, pp. 18–32. CrossrefGoogle Scholar

  • [2] Mark C. P. and Kamath S., “Review of Active Space Debris Removal Methods,” Space Policy, Vol. 47, Feb. 2019, pp. 194–206. CrossrefGoogle Scholar

  • [3] Hakima H. and Emami M. R., “Assessment of Active Methods for Removal of LEO Debris,” Acta Astronautica, Vol. 144, March 2018, pp. 225–243. CrossrefGoogle Scholar

  • [4] Phipps C. R., “L’ ADROIT—A Spaceborne Ultraviolet Laser System for Space Debris Clearing,” Acta Astronautica, Vol. 104, No. 1, 2014, pp. 243–255. CrossrefGoogle Scholar

  • [5] Scharring S., Lorbeer R. A. and Eckel H. A., “Heat Accumulation in Laser-Based Removal of Space Debris,” AIAA Journal, Vol. 56, No. 6, 2018, pp. 2506–2508. LinkGoogle Scholar

  • [6] Kumar R. and Sedwick R. J., “Despinning Orbital Debris Before Docking Using Laser Ablation,” Journal of Spacecraft and Rockets, Vol. 52, No. 4, 2015, pp. 1129–1134. LinkGoogle Scholar

  • [7] Schaub H. and Moorer D. F., “Geosynchronous Large Debris Reorbiter: Challenges and Prospects,” Journal of the Astronautical Sciences, Vol. 59, Nos. 1–2, 2014, pp. 161–176. CrossrefGoogle Scholar

  • [8] Hogan E. and Schaub H., “Relative Motion Control for Two-Spacecraft Electrostatic Orbit Corrections,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 1, Jan.–Feb. 2013, pp. 240–249. LinkGoogle Scholar

  • [9] Aslanov V. and Schaub H., “Detumbling Attitude Control Analysis Considering an Electrostatic Pusher Configuration,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 4, 2019, pp. 900–909. LinkGoogle Scholar

  • [10] Bombardelli C. and Pelaez J., “Ion Beam Shepherd for Contactless Space Debris Removal,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 3, May–June 2011, pp. 916–920. LinkGoogle Scholar

  • [11] Aslanov V. S. and Ledkov A. S., “Attitude Motion of Cylindrical Space Debris During Its Removal by Ion Beam,” Mathematical Problems in Engineering, Vol. 2017, 2017, pp. 1–7. CrossrefGoogle Scholar

  • [12] Urrutxua H., Bombardelli C. and Hedo J. M., “A Preliminary Design Procedure for an Ion-Beam Shepherd Mission,” Aerospace Science and Technology, Vol. 88, May 2019, pp. 421–435. CrossrefGoogle Scholar

  • [13] Merino M., Ahedo E., Bombardelli C., Urrutxua H. and Peláez J., “Ion Beam Shepherd Satellite for Space Debris Removal,” Progress in Propulsion Physics, Vol. 4, March 2013, pp. 789–802. Google Scholar

  • [14] Alpatov A., Cichocki F., Fokov A., Khoroshylov S., Merino M. and Zakrzhevskii A., “Determination of the Force Transmitted by an Ion Thruster Plasma Plume to an Orbital Object,” Acta Astronautica, Vol. 119, Feb.–March 2016, pp. 241–251. CrossrefGoogle Scholar

  • [15] Nadiradze A. B., Obukhov V. A., Pokryshkin A. I., Popov G. A. and Svotina V. V., “Modeling of the Ion Beam Force Impact and Erosive Action on a Large-Sized Object of Technogenic Space Debris,” Proceedings of the Russian Academy of Sciences: Power Engineering, Vol. 2, No. 2, 2016, pp. 146–157. Google Scholar

  • [16] Cichocki F., Merino M. and Ahedo E., “Spacecraft-Plasma-Debris Interaction in an Ion Beam Shepherd Mission,” Acta Astronautica., Vol. 146, May 2018, pp. 216–227. CrossrefGoogle Scholar

  • [17] Ledkov A. S. and Aslanov V. S., “Attitude Motion of Space Debris During Its Removal by Ion Beam Taking Into Account Atmospheric Disturbance,” Journal of Physics: Conference Series, Vol. 1050, No. 1, 2018, Paper 012041. Google Scholar

  • [18] Cichocki F., Merino M., Ahedo E., Smirnova M., Mingo A. and Dobkevicius M., “Electric Propulsion Subsystem Optimization for ‘Ion Beam Shepherd’ Missions,” Journal of Propulsion and Power, Vol. 33, No. 2, 2017, pp. 370–378. LinkGoogle Scholar

  • [19] Alpatov A., Khoroshylov S. and Bombardelli C., “Relative Control of an Ion Beam Shepherd Satellite Using the Impulse Compensation Thruster,” Acta Astronautica, Vol. 151, Oct. 2018, pp. 543–554. CrossrefGoogle Scholar

  • [20] Alpatov A. P., Zakrzhevskii A. E., Fokov A. A. and Khoroshylov S. V., “Determination of Optimal Position of ‘Ion Beam Shepherd’ with Respect to Space Debris Object,” Technical Mechanics, No. 2, 2015, pp. 37–48. Google Scholar

  • [21] Bryson A. E. and Ho Y.-C., Applied Optimal Control: Optimization, Estimation and Control, Routledge, New York, 1975, Chap. 4. Google Scholar

  • [22] Merino M., Ahedo E., Bombardelli C., Urrutxua H. and Pelaez J., “Hypersonic Plasma Plume Expansion,” 32nd International Electric Propulsion Conference, IEPC, Wiesbaden, Germany, 2011, pp. 1–14. Google Scholar

  • [23] Cichocki F., Merino M. and Ahedo E., “Modeling and Simulation of EP Plasma Plume Expansion into Vacuum,” 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2014-3828, 2014, pp. 5008–5024. Google Scholar

  • [24] Aslanov V. S., Rigid Body Dynamics for Space Applications, Butterworth-Heinemann, Oxford, 2017, Chap. 2. Google Scholar

  • [25] Hahn W., Theory and Application of Liapunov’s Direct Method, Computational Methods in Fluid Flow, Prentice-Hall, Upper Saddle River, NJ, 1963, Chaps. 2, 7. Google Scholar

  • [26] Panteleev A. V. and Bortakovskii A. S., Teoriya upravleniya v primerakh i zadachakh (Control Theory in the Examples and Problems), Visshaya Shkola, Moscow, 2003, Chap. 9.2 (in Russian). Google Scholar

  • [27] Aslanov V. S. and Ledkov A. S., “Dynamics of Towed Large Space Debris Taking into Account Atmospheric Disturbance,” Acta Mechanica, Vol. 225, No. 9, 2014, pp. 2685–2697. CrossrefGoogle Scholar

  • [28] Bombardelli C., Merino M., Ahedo E., Pelįez J., Urrutxua H., Iturri-Torreay A. and Herrera-Montojoy J., Ariadna Call for Ideas: Active Removal of Space Debris Ion Beam Shepherd for Contactless Debris Removal, ESA, Madrid, 2011, Chap. 2. Google Scholar

  • [29] Albuja A. A., Scheeres D. J. and McMahon J. W., “Evolution of Angular Velocity for Defunct Satellites as a Result of YORP: An Initial Study,” Advances in Space Research, Vol. 56, No. 2, 2015, pp. 237–251. CrossrefGoogle Scholar

  • [30] Silha J., Schildknecht T., Pittet J. N., Kirchner G., Steindorfer M., Kucharski D., Cerutti-Maori D., Rosebrock J., Sommer S., Leushacke L. and et al., “Debris Attitude Motion Measurements and Modelling by Combining Different Observation Techniques,” Journal of the British Interplanetary Society, Vol. 70, Feb.–April 2017, pp. 52–62. Google Scholar