Skip to main content
Skip to article control options
No AccessEngineering Notes

Three-Dimensional Guidance Law Mimicking Realistic Ballistic Trajectories

Published Online:https://doi.org/10.2514/1.G006741
Free first page

References

  • [1] Fresconi F., “Guidance and Control of a Projectile with Reduced Sensor and Actuator Requirements,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 6, 2011, pp. 1757–1766. https://doi.org/10.2514/1.53584 LinkGoogle Scholar

  • [2] Theodoulis S., Gassmann V., Wernert P., Dritsas L., Kitsios I. and Tzes A., “Guidance and Control Design for a Class of Spin-Stabilized Fin-Controlled Projectiles,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 2, 2013, pp. 517–531. https://doi.org/10.2514/1.56520 LinkGoogle Scholar

  • [3] Gagnon E. and Lauzon M., “Course Correction Fuze Concept Analysis for In-Service 155 mm Spin-Stabilized Gunnery Projectiles,” AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA Paper 2008-6997, 2008. https://doi.org/10.2514/6.2008-6997 LinkGoogle Scholar

  • [4] Jitpraphai T. and Costello M., “Dispersion Reduction of a Direct Fire Rocket Using Lateral Pulse Jets,” Journal of Spacecraft and Rockets, Vol. 38, No. 6, 2001, pp. 929–936. https://doi.org/10.2514/2.3765 LinkGoogle Scholar

  • [5] Rogers J. and Costello M., “Design of a Roll-Stabilized Mortar Projectile with Reciprocating Canards,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 4, 2010, pp. 1026–1034. https://doi.org/10.2514/1.47820 LinkGoogle Scholar

  • [6] Gagnon E. and Vachon A., “Efficiency Analysis of Canards-Based Course Correction Fuze for a 155-mm Spin-Stabilized Projectile,” Journal of Aerospace Engineering, Vol. 29, No. 6, 2016, pp. 1–10. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000634 Google Scholar

  • [7] Yuan L. C., “Homing and Navigational Courses of Automatic Target Seeking Devices,” Journal of Applied Physics, Vol. 19, No. 12, 1948, pp. 1122–1128. https://doi.org/10.1063/1.1715028 CrossrefGoogle Scholar

  • [8] Guo Q., Song W., Wang Y. and Lu Z., “Guidance Law Design for a Class of Dual-Spin Mortars,” International Journal of Aerospace Engineering, Vol. 2015, 2015, pp. 1–12. https://doi.org/10.1155/2015/952076 CrossrefGoogle Scholar

  • [9] Zhang Y., Gao M., Yang S. and Fang D., “An Adaptive Proportional Navigation Guidance Law for Guided Mortar Projectiles,” Journal of Defense Modeling and Simulation, Vol. 13, No. 4, 2016, pp. 467–475. https://doi.org/10.1177/1548512916647810 CrossrefGoogle Scholar

  • [10] Sharma Y. R. and Ratnoo A., “Guidance Law for Mimicking Short-Range Ballistic Trajectories,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 233, No. 11, 2019, pp. 4176–4190. https://doi.org/10.1177/0954410018817424 CrossrefGoogle Scholar

  • [11] Sharma Y. R. and Ratnoo A., “A Bearings-Only Trajectory Shaping Guidance Law with Look-Angle Constraint,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 55, No. 6, 2019, pp. 3303–3315. https://doi.org/10.1109/TAES.2019.2906090 CrossrefGoogle Scholar

  • [12] Yang S., “Impact-Point-Based Guidance of a Spinning Artillery Rocket Using Canard Cyclic Control,” Journal of Guidance, Control, and Dynamics, Vol. 43, No. 10, 2020, pp. 1975–1982. https://doi.org/10.2514/1.G004956 LinkGoogle Scholar

  • [13] Wang Y., Song W., Fang D. and Guo Q., “Guidance and Control Design for a Class of Spin-Stabilized Projectiles with a Two-Dimensional Trajectory Correction Fuze,” International Journal of Aerospace Engineering, Vol. 2015, 2015, pp. 1–15. https://doi.org/10.1155/2015/908304 CrossrefGoogle Scholar

  • [14] Proff M. and Theodoulis S., “Study of Impact Point Prediction Methods for Zero-Effort-Miss Guidance: Application to a 155 mm Spin-Stabilized Guided Projectile,” 5th CEAS Conference on Guidance, Navigation and Control, 2019, pp. 1–20. Google Scholar

  • [15] Lieske R. F. and Reiter M. L., “Equations of Motion for a Modified Point Mass Trajectory,” BRL Rept. 1314, AD 485869, U.S. Army Ballistic Research Lab., Aberdeen Proving Ground, MD, March 1966. CrossrefGoogle Scholar

  • [16] Tipàn S., Theodoulis S., Thai S. and Proff M., “Nonlinear Dynamic Inversion Flight Control Design for Guided Projectiles,” Journal of Guidance, Control, and Dynamics, Vol. 43, No. 5, 2020, pp. 975–980. https://doi.org/10.2514/1.G004976 LinkGoogle Scholar

  • [17] Wernert P., Theodoulis S. and Morel Y., “Flight Dynamics Properties of 155 mm Spin-Stabilized Projectiles Analyzed in Different Body Frames,” AIAA Atmospheric Flight Mechanics Conference, AIAA Paper 2010-7640, 2010. https://doi.org/10.2514/6.2010-7640 LinkGoogle Scholar

  • [18] Zipfel P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, 2nd ed., AIAA Education Series, AIAA, Reston, VA, 2007, Chaps. 2 and 9. https://doi.org/10.2514/4.862182. LinkGoogle Scholar

  • [19] Sève F. and Theodoulis S., “Design of an H Gain-Scheduled Guidance Scheme for a Guided Projectile,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 11, 2019, pp. 2399–2417. https://doi.org/10.2514/1.G004317 LinkGoogle Scholar

  • [20] Zarchan P., Tactical and Strategic Missile Guidance, 6th ed., Progress in Astronautics and Aeronautics, Vol. 239, AIAA, Reston, VA, 2012, Chap. 2. https://doi.org/10.2514/4.868948. LinkGoogle Scholar

  • [21] Shneydor N., Missile Guidance and Pursuit: Kinematics, Dynamics and Control, Horwood Publishing, Chichester, England, U.K., 1998, Chap. 5. CrossrefGoogle Scholar

  • [22] Theodoulis S., Sève F. and Wernert P., “Robust Gain-Scheduled Autopilot Design for Spin-Stabilized Projectiles with a Course-Correction Fuze,” Aerospace Science and Technology, Vol. 42, 2015, pp. 477–489. https://doi.org/10.1016/j.ast.2014.12.027 CrossrefGoogle Scholar

  • [23] Sève F., Theodoulis S., Zasadzinski M., Boutayeb M. and Wernert P., “Nonlinear Flight Simulator of a Canard-Guided Spin-Stabilized Projectile,” 3rd CEAS EuroGNC Conference, 2015, pp. 1–20. Google Scholar

  • [24] Thai S., Theodoulis S., Roos C., Biannic J.-M. and Proff M., “Gain-Scheduled Autopilot Design with Anti-Windup Compensator for a Dual-Spin Canard-Guided Projectile,” IEEE Conference on Control Technology and Applications, IEEE Publ., Piscataway, NJ, 2020, pp. 156–161. https://doi.org/10.1109/CCTA41146.2020.9206311 Google Scholar

  • [25] Thai S., Roos C., Biannic J.-M. and Theodoulis S., “An Interpolated Model Recovery Anti-Windup for a Canard-Guided Projectile Subject to Uncertainties,” 2021 European Control Conference (ECC), IEEE Publ., Piscataway, NJ, 2021, pp. 1693–1698. https://doi.org/10.23919/ECC54610.2021.9655059 Google Scholar

  • [26] Thai S., “Advanced Anti-Windup Flight Control Algorithms for Fast Time-Varying Aerospace Systems,” Ph.D. Thesis, ISAE-SUPAERO, Toulouse, France, 2021. http://www.theses.fr/2021ESAE0040. Google Scholar