Skip to main content
Skip to article control options
No AccessFull-Length Papers

Autonomous Rapid Exploration in Close-Proximity of Asteroids

Published Online:https://doi.org/10.2514/1.G007186

The increasing number of space missions may overwhelm ground support infrastructure, prompting the need for autonomous deep-space guidance, navigation, and control (GNC) systems. These systems offer sustainable and cost-effective solutions, particularly for asteroid missions that deal with uncertain environments. This study proposes a paradigm shift from the proposals currently found in the literature for autonomous asteroid exploration, which inherit the conservative architecture from the ground-in-the-loop approach that relies heavily on reducing uncertainties before close-proximity operations. Instead, it advocates for robust guidance and control to handle uncertainties directly, without extensive navigation campaigns. From a series of conservative assumptions, the authors demonstrate the feasibility of this autonomous GNC for robotic spacecraft by using existing technology. It is shown that a bolder operational approach enables autonomous spacecraft to significantly reduce exploration time by weeks or months. This paradigm shift holds great potential for reducing costs and saving time in autonomous missions of the future.

References

  • [1] Feldhacker J. D., Syal M. B., Jones B. A., Doostan A., McMahon J. and Scheeres D. J., “Shape Dependence of the Kinetic Deflection of Asteroids,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 10, 2017, pp. 2417–2431. https://doi.org/10.2514/1.G002270 LinkGoogle Scholar

  • [2] Cheng A. F., Rivkin A. S., Michel P., Atchison J., Barnouin O., Benner L., Chabot N. L., Ernst C., Fahnestock E. G., Kueppers M. and et al., “AIDA DART Asteroid Deflection Test: Planetary Defense and Science Objectives,” Planetary and Space Science, Vol. 157, Aug. 2018, pp. 104–115. https://doi.org/10.1016/j.pss.2018.02.015 CrossrefGoogle Scholar

  • [3] Takei Y., Saiki T., Yamamoto Y., Mimasu Y., Takeuchi H., Ikeda H., Ogawa N., Terui F., Ono G., Yoshikawa K. and et al., “Hayabusa2’s Station-Keeping Operation in the Proximity of the Asteroid Ryugu,” Astrodynamics, Vol. 4, No. 4, 2020, pp. 349–375. https://doi.org/10.1007/s42064-020-0083-8 Google Scholar

  • [4] Williams B., Antreasian P., Carranza E., Jackman C., Leonard J., Nelson D., Page B., Stanbridge D., Wibben D., Williams K. and et al., “OSIRIS-REx Flight Dynamics and Navigation Design,” Space Science Reviews, Vol. 214, No. 4, 2018, p. 69. https://doi.org/10.1007/s11214-018-0501-x CrossrefGoogle Scholar

  • [5] Committee on Near Earth Object Observations in the Infrared and Visible Wavelengths, “Finding Hazardous Asteroids Using Infrared and Visible Wavelength Telescopes,” TR, 2019, https://nap.nationalacademies.org/catalog/25476/finding-hazardous-asteroids-using-infrared-and-visible-wavelength-telescopes.https://doi.org/10.17226/25476 Google Scholar

  • [6] Scheeres D. and McMahon J., “Autonomous Architectures for Small Body Exploration,” 2019 AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 19-656, 2019. Google Scholar

  • [7] Panicucci P., “Autonomous Vision-Based Navigation and Shape Reconstruction of an Unknown Asteroid During Approach Phase,” Ph.D. Dissertation, ISAE (École nationale supérieure de l'aéronautique et de l'espace), Toulouse, France, 2021. Google Scholar

  • [8] Takahashi S. and Scheeres D. J., “Autonomous Exploration of a Small Near-Earth Asteroid,” Journal of Guidance, Control, and Dynamics, Vol. 44, No. 4, 2021, pp. 701–718. https://doi.org/10.2514/1.G005733 LinkGoogle Scholar

  • [9] Furfaro R., Cersosimo D. and Wibben D. R., “Asteroid Precision Landing via Multiple Sliding Surfaces Guidance Techniques,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 4, 2013, pp. 1075–1092. https://doi.org/10.2514/1.58246 LinkGoogle Scholar

  • [10] Furfaro R., “Hovering in Asteroid Dynamical Environments Using Higher-Order Sliding Control,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 2, 2015, pp. 263–279. https://doi.org/10.2514/1.G000631 LinkGoogle Scholar

  • [11] Gui H. and Ruiter A. H., “Control of Asteroid-Hovering Spacecraft with Disturbance Rejection Using Position-Only Measurements,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 10, 2017, pp. 2401–2416. https://doi.org/10.2514/1.G002617 LinkGoogle Scholar

  • [12] Zhang Y., Zeng X. and Zhang F., “Spacecraft Hovering Flight in a Binary Asteroid System by Using Fuzzy Logic Control,” IEEE Aerospace and Electronic Systems Magazine, Vol. 55, No. 6, 2019, pp. 3246–3258. https://doi.org/10.1109/TAES.7 Google Scholar

  • [13] Negri R. B. and Prado A. F., “Autonomous and Robust Orbit-Keeping for Small-Body Missions,” Journal of Guidance, Control, and Dynamics, Vol. 45, No. 3, 2022, pp. 587–598. https://doi.org/10.2514/1.G005863 Google Scholar

  • [14] Takahashi S. and Scheeres D., “Autonomous Proximity Operations at Small NEAs,” Proceedings of the 33rd International Symposium on Space Technology and Science, JSASS (Japan Soc. for Aeronautical and Space Sciences), 2022. Google Scholar

  • [15] Leonard J. M., Geeraert J. L., Page B. R., French A. S., Antreasian P. G., Adam C. D., Wibben D. R., Moreau M. C. and Lauretta D. S., “OSIRIS-REx Orbit Determination Performance During the Navigation Campaign,” 2019 AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 19-714, 2019. Google Scholar

  • [16] Archinal B., Acton C., A’hearn M., Conrad A., Consolmagno G., Duxbury T., Hestroffer D., Hilton J., Kirk R. L., Klioner S. and et al., “Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015,” Celestial Mechanics and Dynamical Astronomy, Vol. 130, No. 3, 2018, pp. 1–46. https://doi.org/10.1007/s10569-017-9805-5 Google Scholar

  • [17] Scheeres D. J., Orbital Motion in Strongly Perturbed Environments: Applications to Asteroid, Comet and Planetary Satellite Orbiters, Springer–Verlag, Berlin, 2016. Google Scholar

  • [18] Antreasian P., Moreau M., Jackman C., Williams K., Page B. and Leonard J., “OSIRIS-REx Orbit Determination Covariance Studies at Bennu,” AAS Guidance and Control Conference, AAS Paper 16-101, 2016. Google Scholar

  • [19] Montenbruck O., Gill E. and Lutze F., “Satellite Orbits: Models, Methods, and Applications,” Applied Mechanics Reviews, Vol. 55, No. 2, 2002, pp. B27–B28. https://doi.org/10.1115/1.1451162 CrossrefGoogle Scholar

  • [20] Werner R. A. and Scheeres D. J., “Exterior Gravitation of a Polyhedron Derived and Compared with Harmonic and Mascon Gravitation Representations of Asteroid 4769 Castalia,” Celestial Mechanics and Dynamical Astronomy, Vol. 65, No. 3, 1996, pp. 313–344. https://doi.org/10.1007/BF00053511 Google Scholar

  • [21] Werner R. A., “Spherical Harmonic Coefficients for the Potential of a Constant-Density Polyhedron,” Computers & Geosciences, Vol. 23, No. 10, 1997, pp. 1071–1077. https://doi.org/10.1016/S0098-3004(97)00110-6 CrossrefGoogle Scholar

  • [22] Dobrovolskis A. R., “Inertia of Any Polyhedron,” Icarus, Vol. 124, No. 2, 1996, pp. 698–704. https://doi.org/10.1006/icar.1996.0243 CrossrefGoogle Scholar

  • [23] Scheeres D. J., “Orbit Mechanics About Asteroids and Comets,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 3, 2012, pp. 987–997. https://doi.org/10.2514/1.57247 LinkGoogle Scholar

  • [24] Scheeres D. J., “Close Proximity Dynamics and Control About Asteroids,” 2014 American Control Conference, Inst. of Electrical and Electronics Engineers, New York, 2014, pp. 1584–1598. https://doi.org/10.1109/ACC.2014.6858821 Google Scholar

  • [25] Al Asad M., Philpott L., Johnson C., Barnouin O., Palmer E., Weirich J., Daly M., Perry M., Gaskell R., Bierhaus E. and et al., “Validation of Stereophotoclinometric Shape Models of Asteroid (101955) Bennu During the OSIRIS-REx Mission,” Planetary Science Journal, Vol. 2, No. 2, 2021, p. 82. https://doi.org/10.3847/PSJ/abe4dc Google Scholar

  • [26] Bercovici B. and McMahon J. W., “Robust Autonomous Small-Body Shape Reconstruction and Relative Navigation Using Range Images,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 7, 2019, pp. 1473–1488. https://doi.org/10.2514/1.G003898 LinkGoogle Scholar

  • [27] Baker D. and McMahon J., “Limb-Based Shape Modeling and Localization for Autonomous Navigation Around Small Bodies,” 2020 Astrodynamic Specialist Conference, AAS Paper 20-467, 2020. Google Scholar

  • [28] Mizuno T., Kase T., Shiina T., Mita M., Namiki N., Senshu H., Yamada R., Noda H., Kunimori H., Hirata N. and et al., “Development of the Laser Altimeter (LIDAR) for Hayabusa2,” Space Science Reviews, Vol. 208, No. 1, 2017, pp. 33–47. https://doi.org/10.1007/s11214-015-0231-2 Google Scholar

  • [29] Liounis A. J., “Limb Based Optical Navigation for Irregular Bodies,” 1st Annual RPI Workshop on Image-Based Modeling and Navigation for Space Applications, American Astronautical Soc. (AAS), 2018. Google Scholar

  • [30] Snyder J. S., Goebel D. M., Chaplin V., Lopez Ortega A., Mikellides I. G., Aghazadeh F., Johnson I., Kerl T. and Lenguito G., “Electric Propulsion for the Psyche Mission,” AIAA Propulsion and Energy 2020 Forum, AIAA Paper 2020-3607, 2019. https://doi.org/10.2514/6.2020-3607 Google Scholar

  • [31] Tajmar M., Genovese A. and Steiger W., “Indium Field Emission Electric Propulsion Microthruster Experimental Characterization,” Journal of Propulsion and Power, Vol. 20, No. 2, 2004, pp. 211–218. https://doi.org/10.2514/1.9247 LinkGoogle Scholar

  • [32] Bhaskaran S., Desai S., Dumont P., Kennedy B., Null G., Owen W., Synnott S. and Werner R., “Orbit Determination Performance Evaluation of the Deep Space 1 Autonomous Navigation System,” AAS/AIAA Spaceflight Mechanics Meeting, American Astronautical Soc., Monterey, CA, Feb. 1998, Paper AAS 98-193. Google Scholar

  • [33] Riedel J., Bhaskaran S., Desai S., Hand D., Kennedy B., McElrath T. and Ryne M., “Autonomous Optical Navigation(AutoNav) DS 1 Technology Validation Report,” Deep Space 1 Technology Validation Reports (A 01-26126 06-12), Jet Propulsion Lab. Publication 00-10, Pasadena, CA, 2000. Google Scholar

  • [34] Riedel J., Eldred D., Kennedy B., Kubitscheck D., Vaughan A., Werner R., Bhaskaran S. and Synnott S., “AutoNav Mark3: Engineering the Next Generation of Autonomous Onboard Navigation and Guidance,” AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA Paper 2006-6708, 2006. Google Scholar

  • [35] Bhaskaran S., “Autonomous Navigation for Deep Space Missions,” SpaceOps, Vol. 2012, June 2012, Paper 1267135. https://doi.org/10.2514/MSPOPS12 Google Scholar

  • [36] Schutz B., Tapley B. and Born G. H., Statistical Orbit Determination, Elsevier, New York, 2004. Google Scholar

  • [37] Nesnas I. A., Hockman B. J., Bandyopadhyay S., Morrell B. J., Lubey D. P., Villa J., Bayard D. S., Osmundson A., Jarvis B., Bersani M. and et al., “Autonomous Exploration of Small Bodies Toward Greater Autonomy for Deep Space Missions,” Frontiers in Robotics and AI, Vol. 8, Nov. 2021, p. 270. https://doi.org/10.3389/frobt.2021.650885 Google Scholar

  • [38] Bhaskaran S., “Autonomous Optical-Only Navigation for Deep Space Missions,” ASCEND, AIAA Paper 2020-4139, 2020. Google Scholar

  • [39] Slotine J. J. E. and Li W., Applied Nonlinear Control, Vol. 199, Prentice–Hall, Upper Saddle River, NJ, 1991. Google Scholar

  • [40] Tsuda Y., Takeuchi H., Ogawa N., Ono G., Kikuchi S., Oki Y., Ishiguro M., Kuroda D., Urakawa S. and Okumura S.-I., “Rendezvous to Asteroid with Highly Uncertain Ephemeris: Hayabusa2’s Ryugu-Approach Operation Result,” Astrodynamics, Vol. 4, No. 2, 2020, pp. 137–147. https://doi.org/10.1007/s42064-020-0074-9 Google Scholar

  • [41] Hawkins M., Guo Y. and Wie B., “Spacecraft Guidance Algorithms for Asteroid Intercept and Rendezvous Missions,” International Journal of Aeronautical and Space Sciences, Vol. 13, No. 2, 2012, pp. 154–169. https://doi.org/10.5139/IJASS.2012.13.2.154 CrossrefGoogle Scholar

  • [42] Izzo D., “Revisiting Lambert’s Problem,” Celestial Mechanics and Dynamical Astronomy, Vol. 121, No. 1, 2015, pp. 1–15. https://doi.org/10.1007/s10569-014-9587-y CrossrefGoogle Scholar

  • [43] Tsuda Y., Yoshikawa M., Abe M., Minamino H. and Nakazawa S., “System Design of the Hayabusa 2—Asteroid Sample Return Mission to 1999 JU3,” Acta Astronautica, Vol. 91, Oct. 2013, pp. 356–362. https://doi.org/10.1016/j.actaastro.2013.06.028 CrossrefGoogle Scholar

  • [44] Bierhaus E., Clark B., Harris J., Payne K., Dubisher R., Wurts D., Hund R., Kuhns R., Linn T., Wood J. and et al., “The OSIRIS-REx Spacecraft and the Touch-and-Go Sample Acquisition Mechanism (TAGSAM),” Space Science Reviews, Vol. 214, No. 7, 2018, pp. 1–46. https://doi.org/10.1007/s11214-018-0521-6 CrossrefGoogle Scholar

  • [45] Negri R. B., Prado A. F. B. A., Chagas R. A. J. and Moraes R. V., “Six DOF Analysis for Asteroid Autonomous Exploration,” 73rd International Astronautical Congress (IAC 2022), International Astronautical Federation, Paris, 2022, pp. 1–13. Google Scholar

  • [46] Racca G. D. and McNamara P. W., “The LISA Pathfinder Mission,” Space Science Reviews, Vol. 151, Nos. 1–3, 2010, pp. 159–181. https://doi.org/10.1007/s11214-009-9602-x CrossrefGoogle Scholar

  • [47] Wie B., Space Vehicle Dynamics and Control, AIAA, Reston, VA, 2008. LinkGoogle Scholar

  • [48] Kikuchi S., Oki Y. and Tsuda Y., “Frozen Orbits Under Radiation Pressure and Zonal Gravity Perturbations,” Journal of Guidance, Control, and Dynamics, Vol. 44, No. 11, 2021, pp. 1–23. https://doi.org/10.2514/1.G005564 Google Scholar

  • [49] Dietrich A. B. and McMahon J. W., “Robust Orbit Determination with Flash Lidar Around Small Bodies,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 10, 2018, pp. 2163–2184. https://doi.org/10.2514/1.G003023 LinkGoogle Scholar

  • [50] Broschart S. B., Bradley N. and Bhaskaran S., “Kinematic Approximation of Position Accuracy Achieved Using Optical Observations of Distant Asteroids,” Journal of Spacecraft and Rockets, Vol. 56, No. 5, 2019, pp. 1383–1392. https://doi.org/10.2514/1.A34354 LinkGoogle Scholar

  • [51] Di Domenico G., Andreis E., Morelli A. C., Merisio G., Franzese V., Giordano C., Morselli A., Panicucci P., Ferrari F. and Topputo F., “Toward Self-Driving Interplanetary CubeSats: The ERC-Funded Project EXTREMA,” 72nd International Astronautical Congress (IAC 2021), International Astronautical Federation, Paris, 2021, pp. 1–11. Google Scholar

  • [52] Andreis E., Franzese V. and Topputo F., “Onboard Orbit Determination for Deep-Space CubeSats,” Journal of Guidance, Control, and Dynamics, Vol. 45, No. 8, 2022, pp. 1–14. https://doi.org/10.2514/1.G006294 Google Scholar

  • [53] Poore A. B., Slocumb B. J., Suchomel B. J., Obermeyer F. H., Herman S. M. and Gadaleta S. M., “Batch Maximum Likelihood (ML) and Maximum a Posteriori (MAP) Estimation with Process Noise for Tracking Applications,” Signal and Data Processing of Small Targets, Vol. 5204, Soc. of Photo-Optical Instrumentation Engineers, 2003, pp. 188–199. https://doi.org/10.1117/12.506442 Google Scholar

  • [54] Markley F. L. and Carpenter J. R., “Linear Covariance Analysis and Epoch State Estimators,” Journal of the Astronautical Sciences, Vol. 59, No. 3, 2012, pp. 585–605. https://doi.org/10.1007/s40295-014-0006-0 CrossrefGoogle Scholar