Skip to main content
Skip to article control options
No AccessFull-Length Paper

Integrated Tradespace Analysis of Space Network Architectures

Published Online:https://doi.org/10.2514/1.I010356

Methods to design space communication networks at the link level are well understood and abound in the literature. Nevertheless, models that analyze the performance and cost of the entire network are scarce, and they typically rely on computationally expensive simulations that can only be applied to specific network designs. This paper presents an architectural model to quantitatively optimize space communication networks given future customer demands, communication technology, and contract modalities to deploy the network. The model is implemented and validated against NASA’s Tracking and Data Relay Satellite System. It is then used to evaluate new architectures for the fourth-generation Tracking and Data Relay Satellite System given the capabilities of new optical and Ka-band technologies, as well as the possibility to deploy network assets as hosted payloads. Results indicate that optical technology can provide a significant improvement in the network capabilities and lifecycle cost, especially when placing these terminals on board commercial satellites as hosted payloads. The cost savings and benefit improvements of such an architecture are discussed and quantified.

References

  • [1] Yang H., Wang X. and Zhao H., “The Modeling, Simulation and Effectiveness Evaluation for Communication Networks of Multi-Layer Satellites Constellation,” 2006 International Conference on Computational Intelligence and Security, Vol. 2, IEEE Publ., Piscataway, NJ, Nov. 2006, pp. 1055–1060. Google Scholar

  • [2] Stoenescu T. and Clare L., “Traffic Modeling for NASA’s Space Communications and Navigation (SCaN) Network,” 2008 IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, 2008, pp. 1–14. Google Scholar

  • [3] Schorcht G., Freund U., Salzwedel H. and Keller H., “A Hierarchical Object-Oriented Global Traffic Model for Simulation of Mobile Satellite Communication Networks,” 1997 IEEE International Conference on Personal Wireless Communications, IEEE Publ., Piscataway, NJ, 1997, pp. 288–292. Google Scholar

  • [4] Jennings E. and Heckman D., “Performance Characterization of Space Communications and Navigation (SCaN) Network by Simulation,” 2008 IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, March 2008, pp. 1–9. Google Scholar

  • [5] Space Network Users’ Guide (SNUG),” NASA TR-450-SNUG, Aug. 2007. Google Scholar

  • [6] Center G. S. F., “Space Communications and Navigation Network Service Catalog,” NASA, Washington, D.C., Sept. 2011. Google Scholar

  • [7] NASA, TDRS-L Media Kit, 2014, https://www.nasa.gov/sites/default/files/files/TDRS-LMediaGuide-FINAL.pdf (press release). Google Scholar

  • [8] Leone D., “TDRS-K Launch Caught up in Cascade of Fla. Delays,” Space News, Nov. 2012, http://www.spacenews.com/article/launch-report/32141tdrs-k-launch-caught-up-in-cascade-of-fla-delays [retrieved 2015]. Google Scholar

  • [9] Klotz I., “Atlas 5 Delivers NASA’s Newest TDRS Satellite to Geo Transfer Orbit,” Space News, Jan. 2014, http://www.spacenews.com/article/launch-report/39228atlas-5-delivers-nasas-newest-tdrs-satellite-to-geo-transfer-orbit [retrieved 2015]. Google Scholar

  • [10] Space Communications and Navigation (SCaN) Network Architecture Definition Document (ADD) Volume 1: Executive Summary,” NASA TR-SCaN-ADD-v1, Oct. 2011. Google Scholar

  • [11] NASAs Space-Based Relay Study: Overview and Direction,” NASA TR-SBRS, March 2013. Google Scholar

  • [12] Andraschko M., Antol J., Horan S. and Neil D., “Commercially Hosted Government Payloads: Lessons from Recent Programs,” Aerospace Conference, IEEE Publ., Piscataway, NJ, March 2011, pp. 1–15. Google Scholar

  • [13] Barritt B., Bhasin K., Eddy W. and Matthews S., “Unified Approach to Modeling and Simulation of Space Communication Networks and Systems,” 2010 4th Annual IEEE Systems Conference, IEEE Publ., Piscataway, NJ, April 2010, pp. 133–136. Google Scholar

  • [14] Baranyai L., Cuevas E. G., Davidow S., Demaree C. and DiCaprio P., “End-to-End Network Modeling and Simulation of Integrated Terrestrial, Airborne and Space Environments,” 2005 IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, March 2005, pp. 1348–1353. Google Scholar

  • [15] Spangelo S. and Cutler J., “Analytical Modeling Framework and Applications for Space Communication Networks,” Journal of Aerospace Information Systems, Vol. 10, No. 10, Oct. 2013, pp. 452–466. doi:https://doi.org/10.2514/1.I010086 LinkGoogle Scholar

  • [16] Bhasin K., Hackenberg A. W., Slywczak R. B. P., Bergamo M. and Hayden J., “Lunar Relay Satellite Network for Space Exploration: Architecture, Technologies and Challenges,” 24nd AIAA International Communications Satellite Systems Conference, AIAA Paper  2006-5363, June 2006, pp. 12–14. LinkGoogle Scholar

  • [17] Bhasin K., Hayden J., Sartwell T., Miller R. and Hudiburg J., “Integrated Network Architecture for NASAs Orion Missions,” SpaceOps 2008 Conference, AIAA Paper  2008-3587, May 2008, pp. 1–16. doi:https://doi.org/10.2514/6.2008-3587 Google Scholar

  • [18] McCarthy K., Stocklin F., Geldzahler B., Friedman D. and Celeste P., “NASA’s Evolution to Ka-Band Space Communications for Near-Earth Spacecraft,” Proceedings of the SpaceOps 2010 Conference, AIAA Paper  2010-2176, April 2010, pp. 1–12. doi:https://doi.org/10.2514/6.2010-2176 Google Scholar

  • [19] Andersen B. R., Gangaas O. and Andenæs J., “A DVB/Inmarsat Hybrid Architecture for Asymmetrical Broadband Mobile Satellite Services,” International Journal of Satellite Communications and Networking, Vol. 24, No. 2, March 2006, pp. 119–136. doi:https://doi.org/10.1002/sat.834 CrossrefGoogle Scholar

  • [20] Bhasin K. and Hayden J. L., “Space Internet Architectures and Technologies for NASA Enterprises,” IEEE Proceedings of the Aerospace Conference, 2001, Vol. 2, IEEE Publ., Piscataway, NJ, March 2001, pp. 2–931. Google Scholar

  • [21] Schier J. S., Rush J. J., Williams W. D. and Vrotsos P., “Space Communication Architecture Supporting Exploration and Science: Plans and Studies for 2010-2030,” AIAA Proceedings of the 1st Space Exploration Conference: Continuing the Voyage of Discovery, Vol. 30, AIAA Paper  2005-2517, Feb. 2005, pp. 1–33. doi:https://doi.org/10.2514/6.2005-2517 Google Scholar

  • [22] Bhasin K. B., Putt C., Hayden J., Tseng S., Biswas A., Kennedy B., Jennings E., Miller R., Hudiburg J., Miller D., Jeffries A. and Sartwell T., “Architecting the Communication and Navigation Networks for NASA’s Space Exploration Systems,” IEEE International Conference on System of Systems Engineering, 2007: SoSE’07., IEEE Publ., Piscataway, NJ, April 2007, pp. 1–6. Google Scholar

  • [23] Crawley E. F., Cameron B. and Selva D., System Architecture, Pearson, New York, 2015, pp. 331–357. Google Scholar

  • [24] de Weck O., de Neufville R. and Chaize M., Enhancing the Economics of Communications Satellites via Orbital Reconfigurations and Staged Deployment, AIAA, Reston, VA, Sept. 2003, pp. 1–14. LinkGoogle Scholar

  • [25] De Weck O., Neufville R. D. and Chaize M., “Staged Deployment of Communications Satellite Constellations in Low Earth Orbit,” Journal of Aerospace Computing, Information, and Communication, Vol. 1, No. 3, March 2004, pp. 119–136. doi:https://doi.org/10.2514/1.6346 LinkGoogle Scholar

  • [26] Siddiqi A., Mellein J. and De Weck O., “Optimal Reconfigurations for Increasing Capacity of Communication Satellite Constellations,” 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2005-2065, April 2005, pp. 1–13. LinkGoogle Scholar

  • [27] Simmons W. L., “A Framework for Decision Support in Systems Architecting,” Ph.D. Thesis, Massachusetts Inst. of Technology, Cambridge, MA, Feb. 2008. Google Scholar

  • [28] Deb K., “Multi-Objective Optimization,” Search Methodologies, Springer, New York, 2014, pp. 273–316, Chap. 10. CrossrefGoogle Scholar

  • [29] Wertz J. R., Everett D. F. and Puschell J. J., Space Mission Engineering: The New SMAD, Space Technology Library, Microcosm Press, Portland, OR, 2011, pp. 533–586. Google Scholar

  • [30] Maral G. and Bousquet M., Satellite Communications Systems: Systems, Techniques and Technology, Wiley, Surrey, England, U.K., Feb. 2011, pp. 296–298. Google Scholar

  • [31] Brown O. and Eremenko P., “Fractionated Space Architectures: A Vision for Responsive Space,” U.S. Dept. of Defense, Defense Technical Information Center TR, Arlington, VA, April 2006. Google Scholar

  • [32] Brown O., Eremenko P. and Roberts C., “Cost-Benefit Analysis of a Notional Fractionated SATCOM Architecture,” 24th AIAA International Communications Satellite Systems Conference (ICSSC), AIAA Paper  2006-5328, June 2006, pp. 1–17. LinkGoogle Scholar

  • [33] Jo K. Y., Satellite Communications, Network Design and Analysis, Artech House, Boston, Oct. 2011, pp. 63–89. Google Scholar

  • [34] Hemmati H., Deep Space Optical Communications, Vol. 11, Wiley, New York, April 2006, pp. 83–106. CrossrefGoogle Scholar

  • [35] Selva D., Cameron B. and Crawley E., “A Rule-Based Method for Scalable and Traceable Evaluation of System Architectures,” Research in Engineering Design, Vol. 25, No. 4, June 2014, pp. 325–349. doi:https://doi.org/10.1007/s00163-014-0180-x CrossrefGoogle Scholar

  • [36] Selva Valero D., “Rule-Based System Architecting of Earth Observation Satellite Systems,” Ph.D. Thesis, Massachusetts Inst. of Technology, Cambridge, MA, May 2012. Google Scholar

  • [37] Deb K., Pratap A., Agarwal S. and Meyarivan T., “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, April 2002, pp. 182–197. doi:https://doi.org/10.1109/4235.996017 CrossrefGoogle Scholar

  • [38] Deb K. and Jain H., “An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints,” IEEE Transactions on Evolutionary Computation, Vol. 18, No. 4, Aug. 2014, pp. 577–601. doi:https://doi.org/10.1109/TEVC.2013.2281535 CrossrefGoogle Scholar

  • [39] Durkin J., Expert Systems: Design and Development, Macmillan Publ., New York, 1994, pp. 1–15. Google Scholar

  • [40] Forgy C. L., “Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem,” Expert Systems, edited by Raeth P. G., IEEE Computer Soc. Press, Los Alamitos, CA, 1990, pp. 324–341. Google Scholar

  • [41] Sanchez M., Selva D., Cameron B., Crawley E., Seas A. and Seery B., “Exploring the Architectural Trade Space of NASAs Space Communication and Navigation Program,” Aerospace Conference, IEEE Publ., Piscataway, NJ, March 2013, pp. 1–16. Google Scholar

  • [42] Optical Link Study Group: Final Report,” Interagency Operations Advisory Group, Optical Link Study Group TR IOAG.T.OLSG.2012.V1, 2012. Google Scholar

  • [43] Spectrum Allocation Summary [online database], NASA, Washington, D.C., http://classwww.gsfc.nasa.gov/gsams/greet_spectrumAllocationSummary.htm [retrieved 2015]. Google Scholar

  • [44] Sanchez M., Selva D., Cameron B., Crawley E., Seas A. and Seery B., “Results of the MIT Space Communication and Navigation Architecture Study,” 2014 IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, March 2014, pp. 1–14. Google Scholar

  • [45] Davidson A., Kwon D. and Shannon P., “Pricing a Hosted Payload,” Aerospace Conference, IEEE Publ., Piscataway, NJ, March 2012, pp. 1–12. Google Scholar

  • [46] Sanchez M., “Architecting Space Communications Networks,” M.S. Thesis, Massachusetts Inst. of Technology, Dept. of Aeronautics and Astronautics, Cambridge, MA, June 2014. Google Scholar

  • [47] Sutherland T. A., Cameron B. G. and Crawley E. F., “Program Goals for the NASA/NOAA Earth Observation Program Derived from a Stakeholder Value Network Analysis,” Space Policy, Vol. 28, No. 4, Nov. 2012, pp. 259–269. doi:https://doi.org/10.1016/j.spacepol.2012.09.007 CrossrefGoogle Scholar

  • [48] DSN Telecommunications Link Design Handbook,” Jet Propulsion Lab., California Inst. of Technology, Pasadena, CA, 2012. Google Scholar