Skip to main content
Skip to article control options
No AccessFederated and Fractionated Satellite Systems

Distributed Earth Satellite Systems: What Is Needed to Move Forward?

Published Online:https://doi.org/10.2514/1.I010497
Free first page

References

  • [1] Maessen D. C., “Autonomous Relative Navigation for Small Spacecraft,” Ph.D. Dissertation, TU Munich, Munich, 2014. Google Scholar

  • [2] D’Amico S., Pavone M., Saraf S., Alhussien A., Al-Saud T., Buchman S., Byer R. and Farhat C., “Miniaturized Autonomous Distributed Space System for Future Science and Exploration,” International Workshop on Satellite Constellations and Formation Flying, TU Delft, Delft, The Netherlands, 2015, pp. 1–20. Google Scholar

  • [3] Mosleh M., Dalili K. and Heydari B., “Distributed or Monolithic? A Computational Architecture Decision Framework,” IEEE Systems Journal, Vol. PP, No. 99, 2016, pp. 1–12. CrossrefGoogle Scholar

  • [4] Luders R. D., “Satellite Networks for Continuous Zonal Coverage,” ARS Journal, Vol. 31, 1961, pp. 179–184. LinkGoogle Scholar

  • [5] Hanson W., “A Global Internet: The Next Four Billion Users,” New Space, Vol. 3, 2015, pp. 204–207. CrossrefGoogle Scholar

  • [6] Finkelstein S. and Sanford S. H., “Learning from Corporate Mistakes: The Rise and Fall of Iridium,” Organizational Dynamics, Vol. 29, No. 2, 2000, pp. 138–148. CrossrefGoogle Scholar

  • [7] Corbin B. A., “The Value Proposition of Distributed Satellite Systems for Space Science Missions,” Ph.D. Dissertation, Aeronautics and Astronautics, Massachusetts Inst. of Technology, 2015. Google Scholar

  • [8] Graziano M. D., “Overview of Distributed Missions,” Distributed Space Missions for Earth System Monitoring, edited by D’Errico M., Springer, New York, 2013, pp. 375–386. CrossrefGoogle Scholar

  • [9] Mengel J. T., “Tracking the Earth Satellite, and Data Transmission, by Radio,” Proceedings of the IRE, Vol. 44, No. 6, 1956, pp. 755–760. CrossrefGoogle Scholar

  • [10] Mudgway D. J. and Launius R., Uplink-Downlink: A History of the Deep Space Network, 1957–1997, NASA, Washington, D.C., 2001. Google Scholar

  • [11] Heinen W. and Unal M., “Scheduling Tool for ESTRACK Ground Station Management,” The SpaceOps 2010 Conference, AIAA, Reston, VA, 2010, pp. 1–7. Google Scholar

  • [12] Overhage C. F. J. and Radford W. H., “The Lincoln Laboratory West Ford Program—An Historical Perspective,” Proceedings of the IEEE, Vol. 52, No. 5, 1964, pp. 452–454. CrossrefGoogle Scholar

  • [13] Zirm R. R., “The Triple Calibration Sphere (CALSPHERE) Experiment,” Proceedings of the IEEE, Vol. 59, No. 12, 1971, pp. 1725–1726. CrossrefGoogle Scholar

  • [14] Simmons W. L., Koo B. H. Y. and Crawley E. F., “Architecture Generation for Moon-Mars Exploration Using an Executable Meta-Language,” AIAA Space 2005 Conference and Exhibition, AIAA Paper  2005-6726, 2005. LinkGoogle Scholar

  • [15] Kramer H. J., Observation of the Earth and Its Environment: Survey of Missions and Sensors, 4th ed., Springer–Verlag, Berlin, 2002. Google Scholar

  • [16] Whalen D. J., The Origins of Satellite Communications, 1945–1965 (Smithsonian History of Aviation and Spaceflight Series), Smithsonian Inst. Press, Washington D.C., 2002. Google Scholar

  • [17] Jorgensen P. S., “Navstar/Global Positioning System 18-Satellite Constellations,” Navigation, Vol. 27, No. 2, 1980, pp. 89–100. CrossrefGoogle Scholar

  • [18] Ivanov N. and Salischev V., “The GLONASS System—An Overview,” Journal of Navigation, Vol. 45, No. 2, 1992, pp. 175–182. CrossrefGoogle Scholar

  • [19] Trautenberg H. L., Weber T. and Schäfer C., “GALILEO System Overview,” Acta Astronautica, Vol. 55, No. 3, 2004, pp. 643–647. CrossrefGoogle Scholar

  • [20] Teles J., Samii M. and Doll C., “Overview of TDRSS,” Advances in Space Research, Vol. 16, No. 12, 1995, pp. 67–76. CrossrefGoogle Scholar

  • [21] Fossa C. E. and Raines R. A., “An Overview of the IRIDIUM Low Earth Orbit (LEO) Satellite System,” Proceedings of the IEEE 1998 National Aerospace and Electronics Conference, 1998. NAECON 1998, IEEE Publ., Piscataway, NJ, 1998, pp. 152–159. Google Scholar

  • [22] Dietrich F. J., Member L. S., Metzen P. and Monte P., “The Globalstar Cellular Satellite System,” IEEE Transactions on Antennas and Propagation, Vol. 46, No. 6, 1998, pp. 935–942. CrossrefGoogle Scholar

  • [23] Evans M. J. and Maclay T. D., “Mission Design of the ORBCOMM Constellation,” Mission Design and Implementation of Satellite Constellations, Springer, New York, 1998, pp. 103–112. CrossrefGoogle Scholar

  • [24] Springmann P. N. and De Weck O. L., “Parametric Scaling Model for Nongeosynchronous Communications Satellites,” Journal of Spacecraft and Rockets, Vol. 41, No. 3, 2004, pp. 472–477. LinkGoogle Scholar

  • [25] De Weck O. and Chang D., “Architecture Trade Methodology for LEO Personal Communication Systems,” AIAA 20th International Communication Satellite Systems Conference, AIAA Paper  2002-1866, 2002. LinkGoogle Scholar

  • [26] Bostock P. J., “A Brief History of POEM (Polar Orbiting Earth Mission),” British Interplanetary Society, Journal, Vol. 46, No. 6, 1993, pp. 230–231. Google Scholar

  • [27] Wilson W. S. and Dozier J., “The Earth Observing System,” Proceedings of SPIE, Vol. 1491, No. 1, 1991, pp. 117–124. CrossrefGoogle Scholar

  • [28] Dozier J., “Planned EOS Observations of the Land, Ocean and Atmosphere,” Atmospheric Research, Vol. 31, No. 4, 1994, pp. 329–357. CrossrefGoogle Scholar

  • [29] Selva D. and Crawley E. F., “Integrated Assessment of Packaging Architectures in Earth Observing Programs,” IEEE Aerospace Conference Proceedings, IEEE Publ., Piscataway, NJ, 2010, pp. 1–17. CrossrefGoogle Scholar

  • [30] King M. D. and Greenstone R., “1999 EOS Reference Handbook: A Guide to NASA’s Earth Science Enterprise and the Earth Observing System,” Greenbelt, MD, 1999. Google Scholar

  • [31] Ruggieri M. and Galati G., “The Space Systems Technical Panel,” IEEE Aerospace and Electronic Systems Magazine, Vol. 17, No. 9, 2002, pp. 3–11. CrossrefGoogle Scholar

  • [32] Sadin S. R. and Davis R. W., “The Smallsat Revolution … Back to the Future?Acta Astronautica, Vol. 34, Oct. 1994, pp. 109–122. CrossrefGoogle Scholar

  • [33] McCurdy H. E., Faster, Better, Cheaper: Low-Cost Innovation in the U.S. Space Program (New Series in NASA History), Johns Hopkins Univ. Press, Baltimore, MD, 2001, pp. 1–173. Google Scholar

  • [34] Spear T., NASA Faster, Better, Cheaper Task Final Rept., NASA Headquarters, Washington, D.C., 2000, http://mars.nasa.gov/msp98/misc/fbctask.pdf [accessed 28 July 2017]. Google Scholar

  • [35] Selva D. and Crawley E., “Integrated Assessment of Packaging Architectures in Earth Observing Programs,” 2010 IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, 2010, pp. 3–12. CrossrefGoogle Scholar

  • [36] da Silva Curiel A., Boland L., Cooksley J., Bekhti M., Stephens P., Sun W. and Sweeting M., “First Results from the Disaster Monitoring Constellation (DMC),” Acta Astronautica, Vol. 56, Nos. 1–2, 2005, pp. 261–271. CrossrefGoogle Scholar

  • [37] Schoeberl M. R., “The Afternoon Constellation: A Formation of Earth Observing Systems for the Atmosphere and Hydrosphere,” 2002 IEEE International Geoscience and Remote Sensing Symposium, 2002. IGARSS’02, Vol. 1, IEEE Publ., Piscataway, NJ, 2002, pp. 354–356. CrossrefGoogle Scholar

  • [38] Scharf D. P., Hadaegh F. Y. and Ploen S. R., “A Survey of Spacecraft Formation Flying Guidance and Control (Part 1): Guidance,” Proceedings of the American Control Conference, Vol. 2, 2003, pp. 1733–1739. Google Scholar

  • [39] John B., David F. and Kate H., “A Formation Flying Technology Vision,” Space 2000 Conference and Exposition, AIAA Paper  2000-5194, 2000. CrossrefGoogle Scholar

  • [40] Karlow B., Jewison C., Sternberg D., Hall S. and Golkar A., “Tradespace Investigation of Strategic Design Factors for Large Space Telescopes,” Journal of Astronomical Telescopes, Instruments, and Systems, Vol. 1, No. 2, April 2015, Paper 027003. CrossrefGoogle Scholar

  • [41] Lee N., Backes P., Burdick J., Pellegrino S., Fuller C., Hogstrom K., , et al., “Architecture for In-Space Robotic Assembly of a Modular Space Telescope,” Journal of Astronomical Telescopes, Instruments, and Systems, Vol. 2, No. 4, 2016, Paper 041207. CrossrefGoogle Scholar

  • [42] Foerste C., Flechtner F., Schmidt R., Meyer U., Stubenvoll R., Barthelmes F., , et al., “A New High Resolution Global Gravity Field Model from the Combination of GRACE Satellite Mission and Altimetry/Gravimetry Surface Gravity Data,” Geophysical Research Abstracts, Vol. 7, 2005, Paper 04561. Google Scholar

  • [43] D’Errico M., Distributed Space Missions for Earth System Monitoring, Vol. 31, Space Technology Library, Springer–Verlag, New York, 2012, pp. XXII-678. Google Scholar

  • [44] Krieger G., Moreira A., Fiedler H., Hajnsek I., Werner M., Younis M., , et al., “TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 11, 2007, pp. 3317–3341. CrossrefGoogle Scholar

  • [45] Escoubet C. P., Fehringer M. and Goldstein M., “The Cluster Mission,” Annales Geophysicae, Vol. 19, 2001, pp. 1197–1200. CrossrefGoogle Scholar

  • [46] Friis-Christensen E., Lühr H. and Hulot G., “Swarm: A Constellation to Study the Earth’s Magnetic Field,” Earth, Planets and Space, Vol. 58, 2006, pp. 351–358. CrossrefGoogle Scholar

  • [47] Sharma A. and Curtis S. A., “Magnetospheric Multiscale Mission,” Nonequilibrium Phenomena in Plasmas, Springer, New York, 2005, pp. 179–195. CrossrefGoogle Scholar

  • [48] Aung M., Ahmed A., Wette M., Scharf D., Tien J., Purcell G., Regehr M., Landin B., , et al., “An Overview of Formation Flying Technology Development for the Terrestrial Planet Finder Mission,” Vol. 4, IEEE Publ., Piscataway, NJ, 2004, pp. 2667–2679. Google Scholar

  • [49] Bandyopadhyay S., Foust R., Subramanian G. P., Chung S.-J. and Hadaegh F. Y., “Review of Formation Flying and Constellation Missions Using Nanosatellites,” Journal of Spacecraft and Rockets, Vol. 53, No. 3, 2016, pp. 567–578. LinkGoogle Scholar

  • [50] Renner U. and Nauck J., “Development Trends in Europe on Satellite Clusters and Geostationary Platforms,” 10th Communications Satellite Systems Conference and Technical Display, AIAA, New York, 1984, pp. 622–628. Google Scholar

  • [51] Nag S., Gatebe C. K. and de Weck O., “Observing System Simulations for Small Satellite Formations Estimating Bidirectional Reflectance,” International Journal of Applied Earth Observation and Geoinformation, Vol. 43, 2015, pp. 102–118. CrossrefGoogle Scholar

  • [52] Nag S., Gatebe C. K., Miller D. W. and de Weck O. L., “Effect of Satellite Formations and Imaging Modes on Global Albedo Estimation,” Acta Astronautica, Vol. 126, 2016, pp. 77–97. CrossrefGoogle Scholar

  • [53] Engelen S., Gill E. K. and Verhoeven C. J., “Systems Engineering Challenges for Satellite Swarms,” 2011, pp. 1–8. Google Scholar

  • [54] Izzo D. and Pettazzi L., “Autonomous and Distributed Motion Planning for Satellite Swarm,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 2, 2007, pp. 449–459. LinkGoogle Scholar

  • [55] Truszkowski W., Rash J., Rouff C. and Hinchey M., “Asteroid Exploration with Autonomic Systems,” Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems, IEEE Publ., Piscataway, NJ, 2004, pp. 484–489. CrossrefGoogle Scholar

  • [56] Curtis S. a., Truszkowski W., Rilee M. L. and Clark P. E., “ANTS for Human Exploration and Development of Space,” 2003 IEEE Aerospace Conference Proceedings (Cat. No. 03TH8652), Vol. 1, IEEE Publ., Piscataway, NJ, 2003, pp. 1–261. CrossrefGoogle Scholar

  • [57] Truszkowski W., Hinchey M. and Rash J., “NASA’s Swarm Missions: The Challenge of Building Autonomous Software,” IT Professional, Vol. 6, No. 5, 2004, pp. 47–52. CrossrefGoogle Scholar

  • [58] Hinchey M. and Paquet J., “Towards an ASSL Specification Model for NASA Swarm-Based Exploration Missions,” Proceedings of the 2008 ACM Symposium on Applied Computing, Association for Computing Machinery, New York, 2008, pp. 1652–1657. Google Scholar

  • [59] Heidt H., Puig-Suari J., Moore A., Nakasuka S. and Twiggs R., “CubeSat: A New Generation of Picosatellite for Education and Industry Low-Cost Space Experimentation,” Small Satellite Conference, Logan, UT, 2000. Google Scholar

  • [60] Bryerton E. W., Hesler J. L., Retzloff S. A. and Crowe T. W., “874-GHz Heterodyne CubeSat Receiver for Cloud Ice Measurements—Flight Model Data,” 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE Publ., Piscataway, NJ, 2016, pp. 5553–5555. Google Scholar

  • [61] Peral E., Tanelli S., Haddad Z., Sy O., Stephens G. and Im E., “Raincube: A Proposed Constellation of Precipitation Profiling Radars in CubeSat,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE Publ., Piscataway, NJ, 2015, pp. 1261–1264. Google Scholar

  • [62] Bowen J., Tsuda A., Abel J. and Villa M., “CubeSat Proximity Operations Demonstration (CPOD) Mission Update,” 2015 Aerospace Conference, IEEE Publ., Piscataway, NJ, 2015, pp. 1–8. CrossrefGoogle Scholar

  • [63] Kolmas J., Banazadeh P., Koenig A. W., Macintosh B. and D’Amico S., “System Design of a Miniaturized Distributed Occulter/Telescope for Direct Imaging of Star Vicinity,” IEEE Aerospace Conference Proceedings, IEEE Publ., Piscataway, NJ, 2016, pp. 1–11. CrossrefGoogle Scholar

  • [64] Winkler R., “Greg Wyler’s OneWeb Satellite-Internet Company Secures Funding,” Wall Street Journal, Dow Jones & Company, Inc., 2015. Google Scholar

  • [65] Gupta O., “Iridium NEXT Partnership for Earth Observation,” Proceedings of the SPIE, The International Society for Optics and Photonics, Bellingham, WA, Aug. 2008. CrossrefGoogle Scholar

  • [66] Blumenthal S. H., “Medium Earth Orbit Ka Band Satellite Communications System,” MILCOM 2013-2013 Military Communications Conference, IEEE Publ., Piscataway, NJ, 2013, pp. 273–277. CrossrefGoogle Scholar

  • [67] de Selding P. B., “Never Mind the Unconnected Masses, LeoSat’s Broadband Constellation is Strictly Business,” SpaceNews, Nov. 2015. Google Scholar

  • [68] Lunden I., “Google Confirms Purchase of Satellite Startup Skybox Imaging from $500M,” TechCrunch, AOL, Inc., 2014. Google Scholar

  • [69] de Selding P. B., “SpaceX to Build 4,000 Broadband Satellites in Seattle,” Space News, 2015. Google Scholar

  • [70] Finley K., “Samsung Looks to Join the Satellite Internet Space Race,” Wired.com, Condé Nast, 2015. Google Scholar

  • [71] Khan F., “Mobile Internet from the Heavens,” Aug. 2015, https://arxiv.org/abs/1508.02383 [accessed 28 July 2017]. Google Scholar

  • [72] Nagendra N. P., “An Analysis of the Applicability of Space Debris Mitigation Guidelines to the Commercial Small-Satellite Industry.” Google Scholar

  • [73] Belward A. S. and Skøien J. O., “Who Launched What, When and Why; Trends in Global Land-Cover Observation Capacity from Civilian Earth Observation Satellites,” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 103, 2015, pp. 115–128. CrossrefGoogle Scholar

  • [74] Manchester Z., Peck M. and Filo A., “KickSat: A Crowd-Funded Mission to Demonstrate the World’s Smallest Spacecraft,” Annual AIAA/USU Conference on Small Satellites, Logan, UT, 2013. Google Scholar

  • [75] Weis L. M. and Peck M. A., “Dynamics of Chip-Scale Spacecraft Swarms near Irregular Bodies,” 54th AIAA Aerospace Sciences Meeting, AIAA Paper  2016-1468, 2016. Google Scholar

  • [76] Brown O. C., Eremenko P. and Collopy P. D., “Value-Centric Design Methodologies for Fractionated Spacecraft: Progress Summary from Phase 1 of the DARPA System F6 Program,” AIAA SPACE 2009 Conference & Exposition, AIAA Paper  2009-6540, 2009. Google Scholar

  • [77] Maier M. W., “Architecting Principles for Systems-of-Systems,” Systems Engineering, Vol. 1, No. 4, 1998, pp. 267–284. CrossrefGoogle Scholar

  • [78] Aschbacher J., “Copernicus: A Quantum Leap in Earth Observation,” EGU General Assembly Conference Abstracts, Vol. 17, 2015, Paper 15603. Google Scholar

  • [79] Gupta O. P. and Fish C. S., “Iridium NEXT: A Global Access for Your Sensor Needs,” AGU Fall Meetings, 2010. Google Scholar

  • [80] Dyrud L., Fentzke J., Bust G., Erlandson B., Whitely S., Bauer B., , et al., “GEOScan: A Global, Real-Time Geoscience Facility,” IEEE Aerospace Conference Proceedings, IEEE Publ., Piscataway, NJ, 2013, pp. 1–13. CrossrefGoogle Scholar

  • [81] Dyrud L. P., Fentzke J. T., Bust G., Erlandson B., Bauer B., Rogers A. Q., , et al., “GEOScan: A GEOScience Facility From Space,” 26th Annual AIAA/USU Conference on Small Satellites, Utah State Univ., Logan, UT, 2012. Google Scholar

  • [82] Golkar A. and Lluch i Cruz I., “The Federated Satellite Systems paradigm: Concept and Business Case Evaluation,” Acta Astronautica, Vol. 111, July 2015, pp. 230–248. CrossrefGoogle Scholar

  • [83] Zwicky F., Discovery, Invention, Research Through the Morphological Approach, Macmillan Publishing Company, New York, 1969, pp. 1–276. Google Scholar

  • [84] Crawley E., Cameron B. and Selva D., Systems Architecture: Strategy and Product Development for Complex Systems, Prentice Hall, Upper Saddle River, NJ, 2015, pp. 1–480. Google Scholar

  • [85] Shaw G. B., “The Generalized Information Network Analysis Methodology for Distributed Satellite Systems,” Sc.D. Dissertation, Aeronautics and Astronautics, Massachusetts Inst. of Technology, Cambridge MA, 1999. Google Scholar

  • [86] Shaw G. B., Hastings D. E. and Miller D. W., “Generalized Characteristics of Communication, Sensing, and Navigation Satellite Systems,” Journal of Spacecraft and Rockets, Vol. 37, No. 6, 2000, pp. 801–811. LinkGoogle Scholar

  • [87] Sullivan J., Grimberg S. and D’Amico S., “Comprehensive Survey and Assessment of Spacecraft Relative Motion Dynamics Models,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 8, 2017, pp. 1837–1859. LinkGoogle Scholar

  • [88] Kang B. H., Hadaegh F. Y. and Scharf D. P., “On the Validity of the Double Integrator Approximation in Deep Space Formation Flying,” International Symposium on Formation Flying Missions, Jet Propulsion Lab., Pasadena, CA, 2002. Google Scholar

  • [89] Dyrud L., Fentzke J., Bust G., Erlandson B., Whitely S., Bauer B., , et al., “GEOScan: A Global, Real-Time Geoscience Facility,” 2013 Aerospace Conference, IEEE Publ., Piscataway, NJ, 2013, pp. 1–13. Google Scholar

  • [90] Korendyke C., Chua D., Howard R. A., Plunkett S., Socker D., Thernisien A., , et al., “MiniCOR: A Miniature Coronagraph for Interplanetary CubeSat,” Small Satellite Conference (SSC15-XII-6), Logan, UT, 2015. Google Scholar

  • [91] Pong C. M., Lim S., Smith M. W., Miller D. W., Villasenor J. S. and Seager S., “Achieving High-Precision Pointing on ExoplanetSat: Initial Feasibility Analysis,” SPIE Astronomical Telescopes+Instrumentation, International Soc. for Optics and Photonics, Bellingham, WA, 2010, Paper 77311V. Google Scholar

  • [92] Beichman C. A., Woolf N. and Lindensmith C., “The Terrestrial Planet Finder (TPF): A NASA Origins Program to Search for Habitable Planets,” The Terrestrial Planet Finder (TPF): A NASA Origins Program to Search for Habitable Planets/The TPF Science Working Group, edited by Beichman C. A., Woolf N. J. and Lindensmith C. A., Jet Propulsion Lab., California Institute of Technology, JPL Publication 99-3, Vol. 1, Pasadena, CA, 1999. Google Scholar

  • [93] Gair J. R. and Porter E. K., “Observing Extreme-Mass-Ratio Inspirals with eLISA/NGO,” Proceedings of 9th LISA Symposium, edited by Auger G., Binétruy P. and Plagnol E., Vol. 467, Astronomical Soc. of the Pacific, 2012. Google Scholar

  • [94] Gendreau K. C., Cash W. C., Shipley A. F. and White N., “MAXIM Pathfinder x-Ray Interferometry Mission,” Astronomical Telescopes and Instrumentation, International Soc. for Optics and Photonics, 2003, pp. 353–364. Google Scholar

  • [95] Saptarshi B., Giri P. S., Rebecca F., Daniel M., Soon-Jo C. and Fred H., “A Review of Impending Small Satellite Formation Flying Missions,” 53rd AIAA Aerospace Sciences Meeting, AIAA Paper  2015-1623, 2015. Google Scholar

  • [96] Köhler J., Bejhed J., Kratz H., Bruhn F., Lindberg U., Hjort K., , et al., “A Hybrid Cold Gas Microthruster System for Spacecraft,” Sensors and Actuators A: Physical, Vol. 97, 2002, pp. 587–598. CrossrefGoogle Scholar

  • [97] Xiong J., Zhou Z., Sun D. and Ye X., “Development of a MEMS Based Colloid Thruster with Sandwich Structure,” Sensors and Actuators A: Physical, Vol. 117, No. 1, 2005, pp. 168–172. CrossrefGoogle Scholar

  • [98] Marcuccio S., Genovese A. and Andrenucci M., “Experimental Performance of Field Emission Microthrusters,” Journal of Propulsion and Power, Vol. 14, No. 5, 1998, pp. 774–781. LinkGoogle Scholar

  • [99] Cassady R. J., Hoskins W. A., Campbell M. and Rayburn C., “A Micro Pulsed Plasma Thruster (PPT) for the “Dawgstar” Spacecraft,” 2000 Aerospace Conference Proceedings, Vol. 4, IEEE Publ., Piscataway, NJ, 2000, pp. 7–14. Google Scholar

  • [100] Sakaguchi A., Micro-Electromagnetic Formation Flight of Satellite Systems, Massachusetts Inst. of Technology, Cambridge, MA, 2007. Google Scholar

  • [101] Aung M., Ahmed A., Wette M., Scharf D., Tien J., Purcell G., , et al., “An Overview of Formation Flying Technology Development for the Terrestrial Planet Finder Mission,” 2004 Aerospace Conference Proceedings, Vol. 4, IEEE Publ., Piscataway, NJ, 2004, pp. 2667–2679. CrossrefGoogle Scholar

  • [102] Reichbach J., Sedwick R. J. and Martinez-Sanchez M., “Micropropulsion System Selection for Precision Formation Flying Satellites,” 37th Joint Propulsion Conference and Exhibit, AIAA, Reston, VA, 2001. Google Scholar

  • [103] D’Amico S. and Montenbruck O., “Differential GPS: An Enabling Technology for Formation Flying Satellites,” Small Satellite Missions for Earth Observation, Springer, New York, 2010, pp. 457–465. CrossrefGoogle Scholar

  • [104] Sauder J., Chahat N., Thomson M., Hodges R. and Rahmat-Samii Y., “Ultra-Compact Ka-Band Parabolic Deployable Antenna for CubeSats,” 4th Interplanetary CubeSat Workshop, Jet Propulsion Lab., Pasadena, CA, 2015. Google Scholar

  • [105] Florio M. A., Fisher S. J., Mittal S., Yaghmour S., Jansson G., Heuser D., Murray P. L., Worthen A. P. and Cuevas E. G., “Internet Routing in Space: Prospects and Challenges of the IRIS JCTD,” Military Communications Conference (MILCOM 2007), IEEE Publ., Piscataway, NJ, 2007, pp. 1–6. CrossrefGoogle Scholar

  • [106] Hemmati H., Deep Space Optical Communications, Wiley, Hoboken, NJ, 2006, pp. 1–736. CrossrefGoogle Scholar

  • [107] Toyoshima M., “Trends in Satellite Communications and the Role of Optical Free-Space Communications [Invited],” Journal of Optical Networking, Vol. 4, No. 6, 2005, pp. 300–311. CrossrefGoogle Scholar

  • [108] Böhmer K., Gregory M., Heine F., Kämpfner H., Lange R., Lutzer M., , et al., “Laser Communication Terminals for the European Data Relay System,” SPIE LASE, International Soc. for Optics and Photonics, 2012, Paper 82460D. Google Scholar

  • [109] Zech H., Heine F., Tröndle D., Seel S., Motzigemba M., Meyer R., , et al., “LCT for EDRS: LEO to GEO Optical Communications at 1, 8 Gbps Between Alphasat and Sentinel 1a,” SPIE Security+Defence, International Soc. for Optics and Photonics, 2015, Paper 96470J. Google Scholar

  • [110] Kingsbury R., Caplan D. and Cahoy K., “Compact Optical Transmitters for CubeSat Free-Space Optical Communications,” Proceedings of SPIE, Bellingham, WA, 2015, Paper 93540S. Google Scholar

  • [111] Kingsbury R., Riesing K. and Cahoy K., “Design of a Free-Space Optical Communication Module for Small Satellites,” Small Satellite Conference (SSC14-IX-6), Logan, UT, 2014. Google Scholar

  • [112] Kingsbury R. W., Caplan D. O. and Cahoy K. L., “Implementation and Validation of a CubeSat Laser Transmitter,” 2016, Paper 973905. Google Scholar

  • [113] Marshall J. R., Bear M., Hollinden L. and Lapihuska R., “Emergence of a High Performance Tiled Rad-Hard Digital Signal Processor for Spaceborne Applications,” AIAA [email protected] Aerospace ([email protected]) Conference, AIAA Paper  2013-4728, 2013. LinkGoogle Scholar

  • [114] Flatley T. P., “SpaceCube: A Family of Reconfigurable Hybrid On-Board Science Data Processors,” 2015, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150011474.pdf [accessed 29 July 2017]. Google Scholar

  • [115] Rajkowski T., Graczyk R., Palau M. and Orleański P., “Low Cost and High Performance On-Board Computer for Picosatellite,” Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2012, International Soc. for Optics and Photonics, 2012, Paper 84540J. Google Scholar

  • [116] Ludtke D., Westerdorff K., Stohlmann K., Borner A., Maibaum O., Peng T., Weps B., Fey G. and Gerndt A., “OBC-NG: Towards a Reconfigurable On-Board Computing Architecture for Spacecraft,” Aerospace Conference, IEEE Publ., Piscataway, NJ, 2014, pp. 1–13. Google Scholar

  • [117] Parkes S. and Armbruster P., “SpaceWire: A Spacecraft Onboard Network for Real-Time Communications,” 14th IEEE-NPSS Real Time Conference, 2005, IEEE Publ., Piscataway, NJ, 2005, pp. 6–10. CrossrefGoogle Scholar

  • [118] Cianca E., Rossi T., Yahalom A., Pinhasi Y., Farserotu J. and Sacchi C., “EHF for Satellite Communications: The New Broadband Frontier,” Proceedings of the IEEE, Vol. 99, No. 11, 2011, pp. 1858–1881. CrossrefGoogle Scholar

  • [119] Choung Y. H., “V-Band Crosslink Antenna,” 2005 IEEE Antennas and Propagation Society International Symposium, IEEE Publ., Piscataway, NJ, 2005, pp. 387–390. CrossrefGoogle Scholar

  • [120] Fenech H., “KA-SAT and Future HTS Systems,” 2013 IEEE 14th International Vacuum Electronics Conference (IVEC), IEEE Publ., Piscataway, NJ, 2013, pp. 1–2. CrossrefGoogle Scholar

  • [121] Voice Communications,” Consultative Committee for Space Data Systems “Informational Rept. CCSDS 706.2-G-1,” Washington, D.C., 2010. Google Scholar

  • [122] Motion Imagery and Applications,” Consultative Committee for Space Data Systems “Informational Rept. CCSDS 706.1-G-2,” Washington, D.C., 2015. Google Scholar

  • [123] IP over CCSDS Space Links,” Consultative Committee for Space Data Systems “Informational Rept. CCSDS 702.1-B-1,” Washington, D.C., 2012. Google Scholar

  • [124] CCSDS File Delivery Protocol (CFDP)—Part 1: Introduction and Overview,” Consultative Committee for Space Data Systems “Informational Rept.” CCSDS “720.1-G-3,” Washington, D.C., 2007. Google Scholar

  • [125] Jondral F. K., “Software-Defined Radio: Basics and Evolution to Cognitive Radio,” EURASIP Journal on Wireless Communications and Networking, Vol. 3, 2005, pp. 275–283. Google Scholar

  • [126] Maheshwarappa M. R., Bowyer M. and Bridges C. P., “Software Defined Radio (SDR) Architecture to Support Multi-Satellite Communications,” 2015 IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, 2015, pp. 1–10. CrossrefGoogle Scholar

  • [127] Mitola J., “Software Radios: Survey, Critical Evaluation and Future Directions,” IEEE Aerospace and Electronic Systems Magazine, Vol. 8, No. 4, 1993, pp. 25–36. CrossrefGoogle Scholar

  • [128] Akhtyamov R., Cruz I. L. i., Matevosyan H., Knoll D., Pica U., Lisi M., , et al., “An Implementation of Software Defined Radios for Federated Aerospace Networks: Informing Satellite Implementations Using an Inter-Balloon Communications Experiment,” Acta Astronautica, Vol. 123, 2016, pp. 470–478. CrossrefGoogle Scholar

  • [129] Karvinen K., Tikka T. and Praks J., “Using Hobby Prototyping Boards and Commercial-Off-The-Shelf (Cots) Components for Developing Low-Cost, Fast-Delivery Satellite Subsystems,” Journal of Small Satellites (JoSS), Vol. 4, No. 1, 2015, pp. 301–314. Google Scholar

  • [130] Reinhart R. C., “Space Communication and Navigation SDR Testbed, Overview and Opportunity for Experiments,” SDR WinnComm Technical Conference, Washington, D.C., 2013. Google Scholar

  • [131] Crowne M. J., Haskins C. B., Wallis R. E. and Royster D. W., “Demonstrating TRL-6 on the JHU/APL Frontier Radio for the Radiation Belt Storm Probe Mission,” 2011 IEEE Aerospace Conference, 2011, IEEE Publ., Piscataway, NJ, pp. 1–8. Google Scholar

  • [132] Grayver E., Chin A., Hsu J., Stanev S., Kun D. and Parower A., “Software Defined Radio for Small Satellites,” 2015 IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, 2015, pp. 1–9. CrossrefGoogle Scholar

  • [133] Srinivasan D. K., Artis D., Baker B., Stilwell R. and Wallis R., “RF Communications Subsystem for the Radiation Belt Storm Probes Mission,” Acta Astronautica, Vol. 65, Nos. 11–12, 2009, pp. 1639–1649. CrossrefGoogle Scholar

  • [134] Mitola J. and Maguire G. Q., “Cognitive Radio: Making Software Radios More Personal,” IEEE Personal Communications, Vol. 6, No. 4, 1999, pp. 13–18. CrossrefGoogle Scholar

  • [135] Lluch I. and Golkar A., “Adopting the Federated Satellite Systems Paradigm for Earth Observation: an Architecting Framework,” International Astronautical Congress, International Astronautical Federation, Paris, 2015. Google Scholar

  • [136] Pamela M., Lisa H., Erin E. F., Roger H., James E., Brook R. S., Peter W. and Jeremy P., “DARPA Phoenix Satlets: Progress Towards Satellite Cellularization,” AIAA SPACE 2015 Conference and Exposition, AIAA Paper  2015-4487, 2015. Google Scholar

  • [137] Rodgers L., Hoff N., Jordan E., Heiman M. and Miller D., “A Universal Interface for Modular Spacecraft,” Small Satellite Conference, Logan, UT, 2005. Google Scholar

  • [138] Digital Time Division Command/Response Multiplex Data Bus, United States Department of Defense, MIL-STD-1553B, 1978. Google Scholar

  • [139] Systems and Software Engineering—System Life Cycle Processes, ISO/IEC/IEEE 15288:2015, 2015. Google Scholar

  • [140] Product Verification Requirements for Launch, Upper Stage, and Space Vehicles, MIL-STD-1540D, United States Dept. of Defense, 1999. Google Scholar

  • [141] Holtta K. M. M., Suh E. S. and de Weck O. L., “Tradeoff Between Modularity and Performance for Engineered Systems and Products,” International Conference on Engineering Design, The Design Soc., Bristol, U.K., 2005, pp. 1–14. Google Scholar

  • [142] Holtta-Otto K. and de Weck O., “Degree of Modularity in Engineering Systems and Products with Technical and Business Constraints,” Concurrent Engineering, Vol. 15, 2007, pp. 113–126. CrossrefGoogle Scholar

  • [143] Saenz-Otero A. and Miller D. W., “SPHERES: A Platform for Formation-Flight Research,” Optics and Photonics 2005, International Soc. for Optics and Photonics, 2005, Paper 58990O. Google Scholar

  • [144] D’Amico S., Ardaens J.-S. and De Florio S., “Autonomous Formation Flying Based on GPS—PRISMA Flight Results,” Acta Astronautica, Vol. 82, No. 1, 2013, pp. 69–79. CrossrefGoogle Scholar

  • [145] D’Amico S., Ardaens J. S. and Larsson R., “Spaceborne Autonomous Formation-Flying Experiment on the PRISMA Mission,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 3, 2012, pp. 834–850. LinkGoogle Scholar

  • [146] Krieger G., Zink M., Bachmann M., Bräutigam B., Schulze D., Martone M., , et al., “TanDEM-X: A Radar Interferometer with Two Formation-Flying Satellites,” Acta Astronautica, Vol. 89, Aug. 2013, pp. 83–98. CrossrefGoogle Scholar

  • [147] Lamy P., Vivès S., Damé L. and Koutchmy S., “New Perspectives in Solar Coronagraphy Offered by Formation Flying: From PROBA-3 to Cosmic Vision,” Proceedings of SPIE, Vol. 7010, 2008, Paper 70101H. Google Scholar

  • [148] Gill E., Sundaramoorthy P., Bouwmeester J., Zandbergen B. and Reinhard R., “Formation Flying Within a Constellation of Nano-Satellites: The QB50 Mission,” Acta Astronautica, Vol. 82, No. 1, 2013, pp. 110–117. CrossrefGoogle Scholar

  • [149] Haghighi R. and Pang C. K., “Distributed Optimal Formation Flying Control of a Group of Nanosatellites,” 2016 12th IEEE International Conference on Control and Automation (ICCA), IEEE Publ., Piscataway, NJ, 2016, pp. 1020–1025. CrossrefGoogle Scholar

  • [150] Schilling K., “Networked Distributed Pico-Satellite Systems for Earth Observation and Telecommunication Applications,” IFAC Workshop Aerospace Guidance, Navigation and Flight Control Systems (AGNFCS), Samara, Russia, 2009. Google Scholar

  • [151] Ardaens J.-S., Kahle R. and Schulze D., “In-Flight Performance Validation of the TanDEM-X Autonomous Formation Flying System,” International Journal of Space Science and Engineering 5, Vol. 2, No. 2, 2014, pp. 157–170. CrossrefGoogle Scholar

  • [152] Gaias G., Ardaens J.-S. and D’Amico S., “The Autonomous Vision Approach Navigation and Target Identification (AVANTI) Experiment: Objectives and Design,” 9th International ESA Conference on Guidance, Navigation & Control Systems, Porto, Portugal, 2014. Google Scholar

  • [153] Clohessy W. H., “Terminal Guidance System for Satellite Rendezvous,” Journal of the Aerospace Sciences, Vol. 27, No. 9, 1960, pp. 653–658. LinkGoogle Scholar

  • [154] Nag S., Gatebe C. K. and de Weck O., “Observing System Simulations for Small Satellite Formations Estimating Bidirectional Reflectance,” International Journal of Applied Earth Observation and Geoinformation, Vol. 43, No. 2015, 2015, pp. 102–118. CrossrefGoogle Scholar

  • [155] Scharf D. P., Hadaegh F. Y. and Ploen S. R., “A Survey of Spacecraft Formation Flying Guidance and Control. Part II: Control,” Proceedings of the 2004 American Control Conference, Vol. 4, 2004, pp. 2976–2985. Google Scholar

  • [156] Smith R. S. and Hadaegh F. Y., “Control Topologies for Deep Space Formation Flying Spacecraft,” Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), Vol. 4, IEEE Publ., Piscataway, NJ, 2002, pp. 2836–2841. CrossrefGoogle Scholar

  • [157] Veres S. M., Molnar L., Lincoln N. K. and Morice C. P., “Autonomous Vehicle Control Systems—A Review of Decision Making,” Journal of Systems and Control Engineering, Vol. 225, No. 2, March 2011, pp. 155–195. CrossrefGoogle Scholar

  • [158] Kim S. W., Liu W., Ang M. H., Frazzoli E. and Rus D., “The Impact of Cooperative Perception on Decision Making and Planning of Autonomous Vehicles,” IEEE Intelligent Transportation Systems Magazine, Vol. 7, No. 3, 2015, pp. 39–50. CrossrefGoogle Scholar

  • [159] Wörner M., Schuster F., Dölitzscher F., Keller C. G., Haueis M. and Dietmayer K., “Integrity for Autonomous Driving: A Survey,” 2016  IEEE/ION Position, Location and Navigation Symposium (PLANS), 2016, pp. 666–671. Google Scholar

  • [160] Chien S., Doubleday J., Thompson D., Wagstaff K., Bellardo J., Francis C., , et al., “Onboard Autonomy on the Intelligent Payload Experiment CubeSat Mission,” Journal of Aerospace Information Systems, Vol. 14, No. 6, 2017, pp. 307–315. LinkGoogle Scholar

  • [161] Bhasin K., DePaula R. and Edwards C., “Internet Technologies for Space-Based Communications: State of the Art and Challenges,” 18th AIAA International Communication Satellite Systems Conference and Exhibition, AIAA Paper  2000-1170, 2000. LinkGoogle Scholar

  • [162] Bhasin K. and Hayden J. L., “Space Internet Architectures and Technologies for NASA Enterprises,” International Journal of Satellite Communications, Vol. 20, 2002, pp. 311–332. CrossrefGoogle Scholar

  • [163] Caini C., Cruickshank H., Farrell S. and Marchese M., “Delay- and Disruption-Tolerant Networking (DTN): An Alternative Solution for Future Satellite Networking Applications,” Proceedings of the IEEE, Vol. 99, No. 11, 2011, pp. 1980–1997. CrossrefGoogle Scholar

  • [164] Wood L., Eddy W. M., Ivancic W., McKim J. and Jackson C., “Saratoga: A Delay-Tolerant Networking Convergence Layer with Efficient Link Utilization,” International Workshop on Satellite and Space Communications, IEEE Publ., Piscataway, NJ, 2007, pp. 168–172. Google Scholar

  • [165] Jiang L.-z., Meng X., Liu S.-q., Zhang S.-l. and Li Z.-l., “TCP and SCPS over Space Networks,” Second International Symposium on Intelligent Information Technology Application, Vol. 3, 2008, pp. 675–678. Google Scholar

  • [166] Yu X., Yu F., Hou W. and Wang X., “State-of-the-Art of Transmission Protocols for Deep Space Communication Networks,” 2010 First International Conference on Networking and Distributed Computing, 2010, pp. 123–127. Google Scholar

  • [167] Farrell S., Cahill V., Geraghty D., Humphreys I. and McDonald P., “When TCP Breaks: Delay- and Disruption-Tolerant Networking,” IEEE Internet Computing, Vol. 10, No. 4, 2006, pp. 72–78. CrossrefGoogle Scholar

  • [168] Jenkins A., Kuzminsky S., Gifford K. K., Pitts R. L. and Nichols K., “Delay/Disruption-Tolerant Networking: Flight Test Results from the International Space Station,” 2010 IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, 2010, pp. 1–8. CrossrefGoogle Scholar

  • [169] Psaras I., Wood L. and Tafazolli R., “Delay-/Disruption-Tolerant Networking: State of the Art and Future Challenges,” Univ. of Surrey, TR, Guildford, England, U.K., 2010. Google Scholar

  • [170] Zimmermann H., “OSI Reference Model—The ISO Model of Architecture for Open Systems Interconnection,” IEEE Transactions on Communications, Vol. 28, No. 4, 1980, pp. 425–432. CrossrefGoogle Scholar

  • [171] Hoebeke J., Moerman I., Dhoedt B. and Demeester P., “An Overview of Mobile ad hoc Networks: Applications and Challenges,” Journal of the Communications Network, Vol. 3, No. 3, 2004, pp. 60–66. Google Scholar

  • [172] Jacquet P., Muhlethaler P., Clausen T., Laouiti A., Qayyum A. and Viennot L., “Optimized Link State Routing Protocol for ad hoc Networks,” Proceedings of IEEE International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century, IEEE Publ., Piscataway, NJ, 2001, pp. 62–68. CrossrefGoogle Scholar

  • [173] Delosieres L. and Nadjm-Tehrani S., “BATMAN Store-and-Forward: The Best of the Two Worlds,” 2012 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), IEEE Publ., Piscataway, NJ, 2012, pp. 721–727. CrossrefGoogle Scholar

  • [174] Lluch I., Grogan P. T., Pica U. and Golkar A., “Simulating a Proactive ad-hoc Network Protocol for Federated Satellite Systems,” 2015 IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, 2015, pp. 1–16. CrossrefGoogle Scholar

  • [175] Crow B. P., Widjaja I., Kim J. G. and Sakai P. T., “IEEE 802.11 wireless local area networks,” IEEE Communications Magazine, Vol. 35, No. 9, 1997, pp. 116–126. CrossrefGoogle Scholar

  • [176] Dahlman E., Gudmundson B., Nilsson M. and Skold A., “UMTS/IMT-2000 Based on Wideband CDMA,” IEEE Communications Magazine, Vol. 36, No. 9, 1998, pp. 70–80. CrossrefGoogle Scholar

  • [177] Molisch A. F., Balakrishnan K., Chong C. C., Emami S., Fort A., Karedal J., Kunisch J., Schantz H., Schuster U. and Siwiak K., “IEEE 802.15. 4a Channel Model-Final Report,” IEEE P802, Vol. 15, No. 04, 2004, p. 0662. Google Scholar

  • [178] Alena R., Nakamura Y., Faber N. and Mauro D., “Heterogeneous Spacecraft Networks: Wireless Network Technology Assessment,” IEEE Publ., Piscataway, NJ, 2014, pp. 1–13. Google Scholar

  • [179] Janson S. W. and Welle R. P., “The NASA Optical Communication and Sensor Demonstration Program: An Update,” Proceedings of the 28th Annual AIAA/USU Conference on Small Satellites, Next on the Pad, SSC14-VI, Vol. 1, 2014. Google Scholar

  • [180] Xie S., Lee G. X., Low K.-S. and Gunawan E., “Wireless Sensor Network for Satellite Applications: A Survey and Case Study,” Unmanned Systems, Vol. 2, No. 3, 2014, pp. 261–277. CrossrefGoogle Scholar

  • [181] Cockrell J., Alena R., Mayer D., Sanchez H., Luzod T., Yost B., , et al., “EDSN: A Large Swarm of Advanced Yet Very Affordable, COTS-Based NanoSats that Enable Multipoint Physics and Open Source Apps,” Small Satellite Conference, Logan, UT, 2012. Google Scholar

  • [182] Wu S., Chen W., Zhang Y., Baan W. and An T., “SULFRO: A Swarm of Nano-/Micro-Satellite at SE L2 for Space Ultra-Low Frequency Radio Observatory,” Small Satellite Conference, Logan, UT, 2014. Google Scholar

  • [183] Warner J. S. and Johnston R. G., “GPS Spoofing Countermeasures,” Homeland Security Journal, Vol. 25, No. 2, 2003, pp. 19–26. Google Scholar

  • [184] Johnston R. G. and Warner J. S., “Think GPS Offers High Security? Think Again,” U.S. Dept. of Energy, Washington, D.C., 2004. Google Scholar

  • [185] Vladimirova T., Banu R. and Sweeting M., “On-Board Security Services in Small Satellites,” Military and Aerospace Programmable Logic Device (MAPLD) Proceedings, NASA, Washington, D.C., 2005. Google Scholar

  • [186] Kedar D. and Arnon S., “Urban Optical Wireless Communication Networks: The Main Challenges and Possible Solutions,” IEEE Communications Magazine, Vol. 42, No. 5, 2004, pp. S2–S7. CrossrefGoogle Scholar

  • [187] Shah S. M. J., Nasir A. and Ahmed H., “A Survey Paper on Security Issues in Satellite Communication Network Infrastructure,” International Journal of Engineering Research and General Science, Vol. 2, No. 6, 2014, pp. 887–900. Google Scholar

  • [188] Chang Y.-F. and Chang C.-C., “An Efficient Authentication Protocol for Mobile Satellite Communication Systems,” ACM SIGOPS Operating Systems Review, Vol. 39, No. 1, 2005, pp. 70–84. CrossrefGoogle Scholar

  • [189] Achenbach J., “NASA’s Trajectory Unrealistic, Panel Says,” Washington Post, Vol. 14, 2009. Google Scholar

  • [190] Cruickshank H., “A Security System for Satellite Networks,” IET Conference Proceedings, Inst. of Engineering and Technology, 1996, pp. 187–190. Google Scholar

  • [191] Otte W. R., Dubey A., Pradhan S., Patil P., Gokhale A., Karsai G., , et al., “F6com: A Component Model for Resource-Constrained and Dynamic Space-Based Computing Environments,” Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC), IEEE Publ., Piscataway, NJ, 2013, pp. 1–8. CrossrefGoogle Scholar

  • [192] Levendovszky T., Dubey A., Otte W. R., Balasubramanian D., Coglio A., Nyako S., , et al., “Distributed Real-Time Managed Systems: A Model-Driven Distributed Secure Information Architecture Platform for Managed Embedded Systems,” IEEE Software, Vol. 31, No. 2, 2014, pp. 62–69. CrossrefGoogle Scholar

  • [193] Otte W. R., Dubey A. and Karsai G., “A Resilient and Secure Software Platform and Architecture for Distributed Spacecraft,” SPIE Defense+Security, SPIE Paper  90850J, International Soc. for Optics and Photonics, Bellingham, WA, 2014. Google Scholar

  • [194] Partridge C., Walsh R., Gillen M., Lauer G., Lowry J., Strayer W. T., , et al., “A Secure Content Network in Space,” Proceedings of the Seventh ACM International Workshop on Challenged Networks, Association for Computer Machinery, New York, 2012, pp. 43–50. Google Scholar

  • [195] Dubey A., Emfinger W., Gokhale A., Karsai G., Otte W. R., Parsons J., , et al., “A Software Platform for Fractionated Spacecraft,” 2012 IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, 2012, pp. 1–20. CrossrefGoogle Scholar

  • [196] Dubey A., Gokhale A., Karsai G., Otte W. R. and Willemsen J., “A Model-Driven Software Component Framework for Fractionated Spacecraft,” Proceedings of the 5th International Conference on Spacecraft Formation Flying Missions and Technologies (SFFMT), IEEE Publ., Piscataway, NJ, 2013. Google Scholar

  • [197] Juliato M., “Fault Tolerant Cryptographic Primitives for Space Applications,” Ph.D. Thesis, Electrical and Computer Engineering, Univ. of Waterloo, Waterloo, ON, Canada, 2011. Google Scholar

  • [198] Juliato M. and Gebotys C., “An Approach for Recovering Satellites and their Cryptographic Capabilities in the Presence of SEUs and Attacks,” NASA/ESA Conference on Adaptive Hardware and Systems, 2008. AHS’08, IEEE Publ., Piscataway, NJ, 2008, pp. 101–108. Google Scholar

  • [199] Juliato M. and Gebotys C., “SEU-Resistant SHA-256 Design for Security in Satellites,” 10th International Workshop on Signal Processing for Space Communications, 2008. SPSC 2008, IEEE Publ., Piscataway, NJ, 2008, pp. 1–7. Google Scholar

  • [200] Ghaznavi S. and Gebotys C., “A SEU-Resistant, FPGA-Based Implementation of the Substitution Transformation in AES for Security on Satellites,” 10th International Workshop on Signal Processing for Space Communications, 2008. SPSC 2008, IEEE Publ., Piscataway, NJ, 2008, pp. 1–5. Google Scholar

  • [201] Hemenway B., Welser W. and Baiocchi D., “Achieving Higher-Fidelity Conjunction Analyses Using Cryptography to Improve Information Sharing,” RAND Corp. Research Rept., Santa Monica, CA, 2014. Google Scholar

  • [202] Hemenway B., Lu S., Ostrovsky R. and Welser W., “High-Precision Secure Computation of Satellite Collision Probabilities,” International Conference on Security and Cryptography for Networks, Springer International Publ., pp. 169–187. Google Scholar

  • [203] George E. and Harvey S., “A Comparison of Satellite Conjunction Analysis Screening Tools,” Advanced Maui Optical and Space Surveillance Technologies Conference, Curran Associates, Inc., Red Hook, NY, 2011. Google Scholar

  • [204] Daniel S. and Bentin S., “Age-Related Changes in Processing Faces from Detection to Identification: ERP Evidence,” Neurobiology of Aging, Vol. 33, No. 1, Jan. 2012 (in English). CrossrefGoogle Scholar

  • [205] Douglas W. and Simon R., “Applying Secure Software Engineering (SSE) Practices to Critical Space System Infrastructure Development,” SpaceOps 2016 Conference, AIAA Paper  2016-2392, 2016. Google Scholar

  • [206] Pearson S. and Benameur A., “Privacy, Security and Trust Issues Arising from Cloud Computing,” 2010 IEEE Second International Conference on Cloud Computing Technology and Science, IEEE Publ., Piscataway, NJ, 2010, pp. 693–702. Google Scholar

  • [207] Jaeger P. T., Lin J. and Grimes J. M., “Cloud Computing and Information Policy: Computing in a Policy Cloud?Journal of Information Technology and Politics, Vol. 5, No. 3, 2008, pp. 269–283. CrossrefGoogle Scholar

  • [208] O’Neill M. G. and Weigel A. L., “Assessing Fractionated Spacecraft Value Propositions for Earth Imaging Space Missions,” Journal of Spacecraft and Rockets, Vol. 48, No. 6, 2011, pp. 974–986. LinkGoogle Scholar

  • [209] Armbrust M., Fox A., Griffith R., Joseph A. D., Katz R., Konwinski A., , et al., “A View of Cloud Computing,” Communications of the ACM, Vol. 53, No. 4, 2010, pp. 50–58. CrossrefGoogle Scholar

  • [210] Lluch I. and Golkar A., “Design Implications for Missions Participating in Federated Satellite Systems,” Journal of Spacecraft and Rockets, Vol. 52, No. 5, 2015, pp. 1361–1374. LinkGoogle Scholar

  • [211] Matevosyan H., Taylor C. and Golkar A., “Evaluating Virtual Satellite Mission Opportunities,” AIAA SPACE 2015 Conference and Exposition, AIAA Paper  2015-4674, 2015. LinkGoogle Scholar

  • [212] Lluch I. and Golkar A., “Simulating a Proactive Ad-Hoc Network Protocol for Federated Satellite Systems,” Aerospace Conference, IEEE Publ., Piscataway, NJ, 2015. Google Scholar

  • [213] Pica U. and Golkar A., “Sealed-Bid Reverse Auction Pricing Mechanisms for Sharing Economy Systems,” Systems Engineering (accepted for publication). Google Scholar

  • [214] Grogan P. T., Ho K., Golkar A. and Weck O. L. d., “Multi-Actor Value Modeling for Federated Systems,” IEEE Systems Journal, Vol. PP, No. 99, 2016, pp. 1–10. CrossrefGoogle Scholar

  • [215] Matevosyan H., Lluch i Cruz I., Poghosyan A., Golkar A., Moreno C. A., Lamb A., , et al., “Operational Network of Individual User Observation Nodes (ONION) User Needs Analysis,” 4th International Federated and Fractionated Satellite Systems Workshop, Rome, Italy, 2016. Google Scholar

  • [216] Owen B. and Paul E., “The Value Proposition for Fractionated Space Architectures,” SPACE Conferences & Exposition (Space 2006), AIAA Paper  2006-7506, 2006. Google Scholar

  • [217] Componation P. and Collopy P., “Systems Engineering Theory: Addressing Complexity and Uncertainty in Space System Architecting,” AIAA SPACE 2012 Conference & Exposition, AIAA Paper  2012-5278, 2012. LinkGoogle Scholar

  • [218] Brown O. and Eremenko P., “Application of Value-Centric Design to Space Architectures: The Case of Fractionated Spacecraft,” AIAA Paper  2008-7869, 2008. Google Scholar

  • [219] De Weck O., De Neufville R. and Chaize M., “Staged Deployment of Communications Satellite Constellations in Low Earth Orbit,” Journal of Aerospace Computing, Information, and Communication, Vol. 1, No. 3, 2004, pp. 119–136. LinkGoogle Scholar

  • [220] De Weck O. L., Scialom U. and Siddiqi A., “Optimal Reconfiguration of Satellite Constellations with the Auction Algorithm,” Acta Astronautica, Vol. 62, No. 2, 2008, pp. 112–130. CrossrefGoogle Scholar

  • [221] Chan S., Samuels A. T., Shah N. B., Underwood J. E. and De Weck O. L., “Optimization of Hybrid Satellite Constellations Using Multiple Layers and Mixed Circular-Elliptical Orbits,” 22nd AIAA International Communications Satellite Systems Conference and Exhibit, AIAA Paper  2004-3205, 2004, pp. 9–12. LinkGoogle Scholar

  • [222] Department of State, “International Traffic in Arms Regulations,” ITAR, 22 CFR 120-130. Google Scholar

  • [223] Wu T., “Network Neutrality, Broadband Discrimination,” Journal of Telecommunications and High Technology Law, Vol. 2, 2003, p. 141. Google Scholar

  • [224] Palermo G., Golkar A. and Gaudenzi P., “Earth Orbiting Support Systems for Commercial Low Earth Orbit Data Relay: Assessing Architectures Through Tradespace Exploration,” Acta Astronautica, Vol. 111, 2015, pp. 48–60. CrossrefGoogle Scholar

  • [225] Korobova O. G. and Golkar A., “Data Authentication, Integrity and Confidentiality Mechanisms for Federated Satellite Systems,” International Astronautical Congress, Paper IAC-16,B4,7,3,x35767, Guadalajara, Mexico, 2016. Google Scholar

  • [226] Wood L., Clerget A., Andrikopoulos I., Pavlou G. and Dabbous W., “IP Routing Issues in Satellite Constellation Networks,” International Journal of Satellite Communications, Vol. 19, No. 1, 2001, pp. 69–92. CrossrefGoogle Scholar

  • [227] Bobrinsky N. and Del Monte L., “The Space Situational Awareness Program of the European Space Agency,” Cosmic Research, Vol. 48, No. 5, 2010, pp. 392–398. CrossrefGoogle Scholar

  • [228] Arslan H., Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems (Signals and Communication Technology), Vol. 10, Springer, New York, 2007, pp. XVII-469. CrossrefGoogle Scholar

  • [229] Zyskind G., Nathan O. and Pentland A., “Decentralizing Privacy: Using Blockchain to Protect Personal Data,” 2015 IEEE Security and Privacy Workshops, IEEE Publ., Piscataway, NJ, 2015, pp. 180–184. CrossrefGoogle Scholar

  • [230] Böhme R., Christin N., Edelman B. and Moore T., “Bitcoin: Economics, Technology, and Governance,” Journal of Economic Perspectives, Vol. 29, No. 2, 2015, pp. 213–238. CrossrefGoogle Scholar

  • [231] Tschorsch F. and Scheuermann B., “Bitcoin and Beyond: A Technical Survey on Decentralized Digital Currencies,” IEEE Communications Surveys and Tutorials, Vol. 18, No. 3, 2016, pp. 2084–2123. CrossrefGoogle Scholar

  • [232] Vukolić M., “The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT Replication,” Open Problems in Network Security: IFIP WG 11.4 International Workshop, iNetSec 2015, Zurich, Switzerland, October 29, 2015, Revised Selected Papers, edited by Camenisch J. and Kesdoğan D., Springer International Publ., Cham, Switzerland, 2016, pp. 112–125. CrossrefGoogle Scholar

  • [233] De Filippi P., “The Interplay Between Decentralization and Privacy: The Case of Blockchain Technologies,” Journal of Peer Production, Vol. 9, Alternative Internets, 2016, pp. 1–18. Google Scholar

  • [234] NASA Ends Attempts to Fully Recover Kepler Spacecraft, Potential New Missions Considered,” NASA, Washington, D.C., Aug. 2013, https://www.nasa.gov/press/2013/august/nasa-ends-attempts-to-fully-recover-kepler-spacecraft-potential-new-missions/#.WXhoHoh97ic [accessed 29 July 2017]. Google Scholar

  • [235] Borucki W. J., Koch D., Basri G., Batalha N., Brown T., Caldwell D., , et al., “Kepler Planet-Detection Mission: Introduction and First Results,” Science, Vol. 327, No. 5968, 2010, pp. 977–980. CrossrefGoogle Scholar