Skip to main content
Skip to article control options
No AccessFull-Length Paper

Adaptive Knowledge-Driven Optimization for Architecting a Distributed Satellite System

Published Online:https://doi.org/10.2514/1.I010595

As distributed satellite systems gain interest, there is a growing need for design tools that can identify system architectures with good trades in multiple metrics. Evolutionary algorithms have shown promise as effective design-support tools but are computationally inefficient because they require evaluating many architectures before identifying ones with good tradeoffs. Knowledge-driven optimization aims to improve evolutionary algorithms by including a data-mining algorithm that learns design features common in the best architectures found during the optimization. These design features can guide the remainder of the optimization but should be used carefully to prevent misleading the search. This work presents a new knowledge-driven optimization framework, knowledge-driven optimization (KDO)/adaptive operator selection (AOS), that monitors how well the design features guide the search toward good architectures and focuses on using the best features. If none are beneficial to the optimization, KDO/AOS adapts its search strategy to explore regions of the trade space not captured by the design features. KDO/AOS is demonstrated on an architecture design problem for a distributed satellite system, and its adaptive search strategy enables it to discover high-quality architectures with over 800 fewer evaluations when compared with a conventional evolutionary algorithm. KDO/AOS is also more robust than other knowledge-driven optimization algorithms to inaccuracies from data mining.

References

  • [1] Dwyer M., Selva D., Portillo I., Sanchez-Net M., Cameron B., Szajnfarber Z. and Crawley E. F., “Exploring the Trade-Offs of Aggregated Versus Disaggregated Architectures for Environmental Monitoring in Low-Earth Orbit,” AIAA SPACE 2014 Conference and Exposition, AIAA Paper 2014-4416, 2014. LinkGoogle Scholar

  • [2] O’Neill M. G. and Weigel A. L., “Assessing Fractionated Spacecraft Value Propositions for Earth Imaging Space Missions,” Journal of Spacecraft and Rockets, Vol. 48, No. 6, 2011, pp. 974–986. doi:https://doi.org/10.2514/1.50947 JSCRAG 0022-4650 LinkGoogle Scholar

  • [3] Nag S., Gatebe C. K., Miller D. W. and De Weck O. L., “Effect of Satellite Formations and Imaging Modes on Global Albedo Estimation,” Acta Astronautica, Vol. 126, Sept. 2016, pp. 77–97. doi:https://doi.org/10.1016/j.actaastro.2016.04.004 AASTCF 0094-5765 CrossrefGoogle Scholar

  • [4] Nag S., Gatebe C. K. and Hilker T., “Simulation of Multiangular Remote Sensing Products Using Small Satellite Formations,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 10, No. 2, 2016, pp. 638–653. doi:https://doi.org/10.1109/JSTARS.2016.2570683 CrossrefGoogle Scholar

  • [5] Corbin B. A., “The Value Proposition of Distributed Satellite Systems for Space Science Missions,” Ph.D. Thesis, Massachusetts Inst. of Technology, Cambridge, MA, 2015. Google Scholar

  • [6] Selva D., “Rule-Based System Architecting of Earth Observation Satellite Systems,” Ph.D. Thesis, Massachusetts Inst. of Technology, Cambridge, MA, 2012. Google Scholar

  • [7] Deutsch M.-J. and Nichols J. S., “Advanced Approach to Concept and Design Studies for Space Missions,” Astrophysics and Space Science, Vol. 273, Nos. 1–4, 2000, pp. 201–206. doi:https://doi.org/10.1023/A:1002732916148 APSSBE 0004-640X CrossrefGoogle Scholar

  • [8] Fraser R. S., Mattoo S., Yeh E.-n. and McClain C. R., “Algorithm for Atmospheric and Glint Corrections of Satellite Measurements of Ocean Pigment,” Journal of Geophysical Research: Atmospheres, Vol. 102, No. D14, 1997, pp. 17,107–17,118. doi:https://doi.org/10.1029/97JD00357 CrossrefGoogle Scholar

  • [9] Ziemer J., Ervin J. and Lang J., “Exploring Mission Concepts with the JPL Innovation Foundry A-Team,” 2013 AIAA SPACE Conference, AIAA Paper 2013-5431, 2013, pp. 1–13. LinkGoogle Scholar

  • [10] Selva D., “Knowledge-Intensive Global Optimization of Earth Observing System Architectures,” Proceedings of SPIE, Vol. 9241, Sensors, Systems, and Next-Generation Satellites XVIII, 2014, Paper 92411S. Google Scholar

  • [11] Nag S., LeMoigne J., Miller D. W. and de Weck O. L., “A Framework for Orbital Performance Evaluation in Distributed Space Missions for Earth Observation,” 2015 IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, 2015, pp. 1–20. doi:https://doi.org/10.1109/AERO.2015.7119227 Google Scholar

  • [12] Ferringer M. P., Spencer D. B. and Reed P. M., “Many-Objective Reconfiguration of Operational Satellite Constellations with the Large-Cluster Epsilon Non-Dominated Sorting Genetic Algorithm-II,” 2009 IEEE Congress on Evolutionary Computation, CEC 2009, IEEE Publ., Piscataway, NJ, 2009, pp. 340–349. doi:https://doi.org/10.1109/CEC.2009.4982967 Google Scholar

  • [13] Nag S., Hughes S. P. and Le Moigne J., “Streamlining the Design Tradespace for Earth Imaging Constellations,” AIAA SPACE Conference 2016, AIAA Paper 2016-5561, 2016, pp. 1–17. doi:https://doi.org/10.2514/6.2016-5561 LinkGoogle Scholar

  • [14] Ferringer M. P. and Spencer D. B., “Satellite Constellation Design Tradeoffs Using Multiple-Objective Evolutionary Computation,” Journal of Spacecraft and Rockets, Vol. 43, No. 6, 2006, pp. 1404–1411. JSCRAG 0022-4650 LinkGoogle Scholar

  • [15] Ferringer M. P., Clifton R. S. and Thompson T. G., “Efficient and Accurate Evolutionary Multi-Objective Optimization Paradigms for Satellite Constellation Design,” Journal of Spacecraft and Rockets, Vol. 44, No. 3, 2007, pp. 682–691. doi:https://doi.org/10.2514/1.26747 JSCRAG 0022-4650 LinkGoogle Scholar

  • [16] Reed P. M., Chaney N. W., Herman J. D., Ferringer M. P. and Wood E. F., “Internationally Coordinated Multi-Mission Planning is Now Critical to Sustain the Space-Based Rainfall Observations Needed for Managing Floods Globally,” Environmental Research Letters, Vol. 10, No. 2, 2015, Paper 024010. doi:https://doi.org/10.1088/1748-9326/10/2/024010 CrossrefGoogle Scholar

  • [17] Hitomi N. and Selva D., “Constellation Optimization Using an Evolutionary Algorithm with a Variable-Length Chromosome,” IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, 2018, Paper 130407. Google Scholar

  • [18] Hitomi N. and Selva D., “Incorporating Expert Knowledge Into Evolutionary Algorithms with Operators and Constraints to Design Satellite Systems,” Applied Soft Computing, Vol. 66, May 2018, pp. 330–345. doi:https://doi.org/10.1016/j.asoc.2018.02.017 CrossrefGoogle Scholar

  • [19] Coello Coello C. A., Lamont G. B. and Veldhuizen D. A. V., Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd ed., Genetic and Evolutionary Computation Series, Springer, Boston, MA, 2007. doi:https://doi.org/10.1007/978-0-387-36797-2 Google Scholar

  • [20] Johnston M. D., “An Evolution Algorithm Approach to Multi-Objective Scheduling of Space Network Communications,” Intelligent Automation and Soft Computing, Vol. 14, No. 3, 2008, pp. 367–376. doi:https://doi.org/10.1080/10798587.2008.10643001 CrossrefGoogle Scholar

  • [21] Kudo F. and Yoshikawa T., “Knowledge Extraction in Multi-Objective Optimization Problem Based on Visualization of Pareto Solutions,” 2012 IEEE Congress on Evolutionary Computation, IEEE Publ., Piscataway, NJ, 2012 pp. 1–6. doi:https://doi.org/10.1109/CEC.2012.6256449 Google Scholar

  • [22] Watanabe S., Chiba Y. and Kanazaki M., “A Proposal on Analysis Support System Based on Association Rule Analysis for Non-Dominated Solutions,” Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014, IEEE Publ., Piscataway, NJ, 2014, pp. 880–887. doi:https://doi.org/10.1109/CEC.2014.6900650 Google Scholar

  • [23] Woodruff M. J. and Simpson T. W., “Problem Exploration with Many-Objective Visual Analytics,” Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Soc. of Mechanical Engineers, Fairfield, NJ, 2016, pp. 1–11. doi:https://doi.org/10.1115/DETC2016-60232 Google Scholar

  • [24] Woodruff M. J., “Many Objective Visual Analytics: Decision Aiding Tools for Conceptual Design,” Ph.D. Thesis, Pennsylvania State Univ., State College, PA, 2016. Google Scholar

  • [25] Bandaru S., Ng A. H. C. and Deb K., “Data Mining Methods for Knowledge Discovery in Multi-Objective Optimization: Part A—Survey,” Expert Systems with Applications, Vol. 70, March 2016, pp. 139–159. doi:https://doi.org/10.1016/j.eswa.2016.10.015 ESAPEH 0957-4174 CrossrefGoogle Scholar

  • [26] Hitomi N., Bang H. and Selva D., “Extracting and Applying Knowledge with Adaptive Knowledge-Driven Optimization to Architect and Earth Observing Satellite System,” AIAA Information Systems at the AIAA SciTech Forum, AIAA Paper  2017-0794, 2017, pp. 1–21. doi:https://doi.org/10.2514/6.2017-0794 LinkGoogle Scholar

  • [27] Bonissone P. P., Subbu R., Eklund N. and Kiehl T. R., “Evolutionary Algorithms + Domain Knowledge=Real-World Evolutionary Computation,” IEEE Transactions on Evolutionary Computation, Vol. 10, No. 3, 2006, pp. 256–280. doi:https://doi.org/10.1109/TEVC.2005.857695 ITEVF5 1089-778X CrossrefGoogle Scholar

  • [28] Chabuk T., Reggia J., Lohn J. and Linden D., “Causally-Guided Evolutionary Optimization and Its Application to Antenna Array Design,” Integrated Computer-Aided Engineering, Vol. 19, No. 2, 2012, pp. 111–124. doi:https://doi.org/10.3233/ICA-2012-0395 ICAEEI 1069-2509 CrossrefGoogle Scholar

  • [29] Mahbub M. S., Wagner M., Crema L. and Kessler F. B., “Incorporating Domain Knowledge into the Optimization of Energy Systems,” Applied Soft Computing, Vol. 47, Oct. 2016, pp. 483–493. doi:https://doi.org/10.1016/j.asoc.2016.06.013 CrossrefGoogle Scholar

  • [30] Surry P. D. and Radcliffe N. J., “Inoculation to Initialize Evolutionary Search,” Evolutionary Computing: AISB Workshop, Vol. 1143, April 1996, pp. 269–285. doi:https://doi.org/10.1007/BFb0032768 Google Scholar

  • [31] Smith A. E., Coit D. W. and Michalewicz Z., “Penalty Functions,” Handbook of Evolutionary Computation, edited by Baeck T., Fogel D. and Michalewicz Z., IOP Publishing, Bristol, England, U.K., 1997, pp. 1–6, Chap. 5. CrossrefGoogle Scholar

  • [32] Deb K., Bandaru S., Greiner D., Gaspar-Cunha A. and Tutum C. C., “An Integrated Approach to Automated Innovization for Discovering Useful Design Principles: Case Studies from Engineering,” Applied Soft Computing, Vol. 15, Feb. 2014, pp. 42–56. doi:https://doi.org/10.1016/j.asoc.2013.10.011 CrossrefGoogle Scholar

  • [33] Michalski R. S., “Learnable Evolution Model: Evolutionary Processes Guided by Machine Learning,” Machine Learning, Vol. 38, No. 1, 2000, pp. 9–40. doi:https://doi.org/10.1023/A:1007677805582 MALEEZ 0885-6125 CrossrefGoogle Scholar

  • [34] Chichakly K. J. and Eppstein M. J., “Discovering Design Principles from Dominated Solutions,” IEEE Access, Vol. 1, No. iii, 2013, pp. 275–289. doi:https://doi.org/10.1109/ACCESS.2013.2262491 CrossrefGoogle Scholar

  • [35] Selva D., Abello C. and Hitomi N., “Preliminary Experiments with Learning Agents in an Interactive Multi-Agent Systems Architecture Tradespace Exploration Tool,” 2015 Annual IEEE Systems Conference (SysCon) Proceedings, IEEE Publ., Piscataway, NJ, 2015, pp. 445–452. doi:https://doi.org/10.1109/SYSCON.2015.7116791 Google Scholar

  • [36] Gaur A. and Deb K., “Adaptive Use of Innovization Principles for a Faster Convergence of Evolutionary Multi-Objective Optimization Algorithms,” Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion—GECCO ‘16 Companion, Assoc. for Computing Machinery, New York, 2016, pp. 75–76. doi:https://doi.org/10.1145/2908961.2909019 Google Scholar

  • [37] Hitomi N. and Selva D., “A Hyperheuristic Approach To Leveraging Domain Knowledge In Multi-Objective Evolutionary Algorithms,” Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2016, ASME Paper  59870, Fairfield, NJ, 2016. Google Scholar

  • [38] Hart W. E., Krasnogor N. and Smith J. E., Recent Advances in Memetic Algorithms, Vol. 166, Studies in Fuzziness and Soft Computing, Springer–Verlag, Berlin, 2005, pp. 313–352. doi:https://doi.org/10.1007/3-540-32363-5 CrossrefGoogle Scholar

  • [39] Balling R., “Design by Shopping: A New Paradigm?Proceedings of the Third World Congress of Structural and Multidisciplinary Optimization (WCSMO-3), International Soc. for Structural and Multidisciplinary Optimization, Berlin, 1999, pp. 295–297. Google Scholar

  • [40] Deb K., Pratap A., Agarwal S. and Meyarivan T., “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, 2002, pp. 182–197. doi:https://doi.org/10.1109/4235.996017 ITEVF5 1089-778X CrossrefGoogle Scholar

  • [41] Wolpert D. H. and Macready W., “No Free Lunch Theorems for Optimization,” IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1, 1997, pp. 67–82. doi:https://doi.org/10.1109/4235.585893 ITEVF5 1089-778X CrossrefGoogle Scholar

  • [42] Ho Y.-C. and Pepyne D., “Simple Explanation of the No-Free-Lunch Theorem and Its Implications,” Journal of Optimization Theory and Applications, Vol. 115, No. 3, 2002, pp. 549–570. doi:https://doi.org/10.1023/A:1021251113462 JOTABN 0022-3239 CrossrefGoogle Scholar

  • [43] Falkenauer E., Genetic Algorithms and Grouping Problems, 1st ed., Wiley, West Essex, England, U.K., 1998, pp. 86–111. Google Scholar

  • [44] Mezura-Montes E. and Coello Coello C. A., “Constraint-Handling in Nature-Inspired Numerical Optimization: Past, Present and Future,” Swarm and Evolutionary Computation, Vol. 1, No. 4, 2011, pp. 173–194. doi:https://doi.org/10.1016/j.swevo.2011.10.001 CrossrefGoogle Scholar

  • [45] Coello Coello C. A., “Theoretical and Numerical Constraint-Handling Techniques Used with Evolutionary Algorithms: A Survey of the State of the Art,” Computer Methods in Applied Mechanics and Engineering, Vol. 191, Nos. 11–12, 2002, pp. 1245–1287. doi:https://doi.org/10.1016/S0045-7825(01)00323-1 CMMECC 0045-7825 CrossrefGoogle Scholar

  • [46] Kazimipour B., Li X. and Qin A. K., “A Review of Population Initialization Techniques for Evolutionary Algorithms,” 2014 IEEE Congress on Evolutionary Computation (CEC), IEEE Publ., Piscataway, NJ, 2014, pp. 2585–2592. doi:https://doi.org/10.1109/CEC.2014.6900618 Google Scholar

  • [47] Friedrich T. and Wagner M., “Seeding the Initial Population of Multi-Objective Evolutionary Algorithms: A Computational Study,” Applied Soft Computing Journal, Vol. 33, Aug. 2015, pp. 223–230. doi:https://doi.org/10.1016/j.asoc.2015.04.043 CrossrefGoogle Scholar

  • [48] Selva D., “Experiments in Knowledge-Intensive System Architecting: Interactive Architecture Optimization,” IEEE Aerospace Conference IEEE Publ., Piscataway, NJ, 2014, Paper 2217. Google Scholar

  • [49] Knowles J. D., “ParEGO: A Hybrid Algorithm with On-Line Landscape Approximation for Expensive Multiobjective Optimization Problems,” IEEE Transactions on Evolutionary Computation, Vol. 10, No. 1, 2006, pp. 50–66. doi:https://doi.org/10.1109/TEVC.2005.851274 ITEVF5 1089-778X CrossrefGoogle Scholar

  • [50] Frazier P. I. and Wang J., Bayesian Optimization for Materials Design, Vol. 225, Springer Series in Materials Science, Springer International, Cham, Switzerland, 2016, pp. 45–75. doi:https://doi.org/10.1007/978-3-319-23871-5_3 CrossrefGoogle Scholar

  • [51] Pelikan M., Goldberg D. E. and Cantú-Paz E., “BOA: The Bayesian Optimization Algorithm,” Genetic and Evolutionary Computation, Vol. 1, July 1999, pp. 525–532. doi:https://doi.org/10.1.1.46.8131 Google Scholar

  • [52] Ahn C. W. and Ramakrishna R., “On the Scalability of Real-Coded Bayesian Optimization Algorithm,” IEEE Transactions on Evolutionary Computation, Vol. 12, No. 3, 2008, pp. 307–322. doi:https://doi.org/10.1109/TEVC.2007.902856 ITEVF5 1089-778X CrossrefGoogle Scholar

  • [53] Zhou A., Zhang Q. and Jin Y., “Approximating the Set of Pareto-Optimal Solutions in Both the Decision and Objective Spaces by an Estimation of Distribution Algorithm,” IEEE Transactions on Evolutionary Computation, Vol. 13, No. 5, 2009, pp. 1167–1189. doi:https://doi.org/10.1109/TEVC.2009.2021467 ITEVF5 1089-778X CrossrefGoogle Scholar

  • [54] Jasimuddin S. M., Klein J. H. and Connell C., “The Paradox of Using Tacit and Explicit Knowledge,” Management Decision, Vol. 43, No. 1, 2005, pp. 102–112. doi:https://doi.org/10.1108/00251740510572515 MANDA4 CrossrefGoogle Scholar

  • [55] Meyer B. and Sugiyama K., “The Concept of Knowledge in KM: A Dimensional Model,” Journal of Knowledge Management, Vol. 11, No. 1, 2007, pp. 17–35. doi:https://doi.org/10.1108/13673270710728213 CrossrefGoogle Scholar

  • [56] Deb K. and Srinivasan A., “Innovization: Innovating Design Principles Through Optimization,” GECCO ‘06 Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Assoc. for Computing Machinery, New York, 2006, pp. 1629–1636. doi:https://doi.org/10.1145/1143997.1144266 Google Scholar

  • [57] Obayashi S. and Sasaki D., “Visualization and Data Mining of Pareto Solutions Using Self-Organizing Map,” Evolutionary Multi-Criterion Optimization 2003 LNCS, Vol. 2632, Springer–Verlag, Berlin, 2003, pp. 796–809. doi:https://doi.org/10.1007/3-540-36970-8_56 Google Scholar

  • [58] Chiu P. W. and Bloebaum C., “Hyper-Radial Visualization (HRV) for Decision-Making in Multi-Objective Optimization,” 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2008-0907, 2008, pp. 1–0. doi:https://doi.org/10.2514/6.2008-907 LinkGoogle Scholar

  • [59] Yoshida T. and Yoshikawa T., “A Study on Non-Correspondence in Spread Between Objective Space and Design Variable Space for Trajectory Designing Optimization Problem,” 2014 IEEE Congress on Evolutionary Computation (CEC), IEEE Publ., Piscataway, NJ, 2014, pp. 2444–2450. doi:https://doi.org/10.1109/CEC.2014.6900401 Google Scholar

  • [60] Knerr N. and Selva D., “Cityplot: Visualization of High-Dimensional Design Spaces with Multiple Criteria,” Journal of Mechanical Design, Vol. 138, No. 9, 2016, Paper 091403. doi:https://doi.org/10.1115/1.4033987 CrossrefGoogle Scholar

  • [61] Jahr R., Calborean H., Vintan L. and Ungerer T., “Boosting Design Space Explorations with Existing or Automatically Learned Knowledge,” International GI/ITG Conference on Measurement, Modelling, and Evaluation of Computing Systems and Dependability and Fault Tolerance, Vol. 7201, Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer, New York, 2012, pp. 221–235. doi:https://doi.org/10.1007/978-3-642-28540-0_16 CrossrefGoogle Scholar

  • [62] Jourdan L., Corne D. W., Savic D. and Walters G., “Preliminary Investigation of the ‘Learnable Evolution Model’ for Faster/Better Multiobjective Water Systems Design,” Third International Conference, EMO 2005, Springer–Verlag, Berlin, 2005, pp. 841–855. doi:https://doi.org/10.1007/978-3-540-31880-4_58 Google Scholar

  • [63] Dudas C., Ng A. H. C. and Boström H., “Post-Analysis of Multi-Objective Optimization Solutions Using Decision Trees,” Intelligent Data Analysis, Vol. 19, No. 2, 2015, pp. 259–278. doi:https://doi.org/10.3233/IDA-150716 CrossrefGoogle Scholar

  • [64] Michalski R. S., “On the Quasi-Minimal Solution of the General Covering Problem,” Proceedings of the V International Symposium on Information Processing (FCIP 69), Vol. A3, Yugoslavia, Bled, Oct. 1969, pp. 125–128. Google Scholar

  • [65] Cervone G., Franzese P. and Keesee A. P. K., “Algorithm Quasi-Optimal (AQ) Learning,” Wiley Interdisciplinary Reviews: Computational Statistics, Vol. 2, No. 2, 2010, pp. 218–236. doi:https://doi.org/10.1002/wics.78 CrossrefGoogle Scholar

  • [66] Ng A. H. C., Dudas C., Boström H. and Deb K., “Interleaving Innovization with Evolutionary Multi-Objective Optimization in Production System Simulation for Faster Convergence,” 7th International Conference, LION 7, LNCS, Vol. 7997, edited by Nicosia G. and Pardalos P., Springer–Verlag, Berlin, 2013, pp. 1–18. doi:https://doi.org/10.1007/978-3-642-44973-4_1 CrossrefGoogle Scholar

  • [67] Michalski R. S., Cervone G. and Kaufman K., “Speeding up Evolution Through Learning: LEM,” Advances in Soft Computing, Vol. 4, 2000, pp. 243–256. doi:https://doi.org/10.1007/978-3-7908-1846-8_22 Google Scholar

  • [68] Hadka D. M. and Reed P. M., “Diagnostic Assessment of Search Controls and Failure Modes in Many-Objective Evolutionary Optimization,” Evolutionary Computation, Vol. 20, No. 3, 2012, pp. 423–452. doi:https://doi.org/10.1162/EVCO_a_00053 EOCMEO CrossrefGoogle Scholar

  • [69] Hadka D. M. and Reed P. M., “Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework,” Evolutionary Computation, Vol. 21, No. 2, 2013, pp. 231–259. doi:https://doi.org/10.1162/EVCO_a_00075 EOCMEO CrossrefGoogle Scholar

  • [70] Li K., Fialho Á., Kwong S. and Zhang Q., “Adaptive Operator Selection with Bandits for a Multiobjective Evolutionary Algorithm Based on Decomposition,” IEEE Transactions on Evolutionary Computation, Vol. 18, No. 1, 2014, pp. 114–130. doi:https://doi.org/10.1109/TEVC.2013.2239648 ITEVF5 1089-778X CrossrefGoogle Scholar

  • [71] Hitomi N. and Selva D., “A Classification and Comparison of Credit Assignment Strategies in Multiobjective Adaptive Operator Selection,” IEEE Transactions on Evolutionary Computation, Vol. 21, No. 2, 2017, pp. 294–314. doi:https://doi.org/10.1109/TEVC.2016.2602348 ITEVF5 1089-778X CrossrefGoogle Scholar

  • [72] Fialho Á., Da Costa L., Schoenauer M. and Sebag M., “Extreme Value Based Adaptive Operator Selection,” Parallel Problem Solving from Nature, Springer, New York, 2008, pp. 175–184. Google Scholar

  • [73] Fialho Á., Schoenauer M. and Sebag M., “Toward Comparison-Based Adaptive Operator Selection,” Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation—GECCO ‘10, ACM, New York, pp. 767–774. doi:https://doi.org/10.1145/1830483.1830619 Google Scholar

  • [74] Fialho Á., Da Costa L., Schoenauer M. and Sebag M., “Analyzing Bandit-Based Adaptive Operator Selection Mechanisms,” Annals of Mathematics and Artificial Intelligence, Vol. 60, No. 1, 2010, pp. 25–64. doi:https://doi.org/10.1007/s10472-010-9213-y AMAIEC 1012-2443 CrossrefGoogle Scholar

  • [75] Goldberg D. E., “Probability Matching, the Magnitude of Reinforcement, and Classifier System Bidding,” Machine Learning, Vol. 5, No. 4, 1990, pp. 407–425. doi:https://doi.org/10.1007/BF00116878 MALEEZ 0885-6125 CrossrefGoogle Scholar

  • [76] Thierens D., “Adaptive Strategies for Operator Allocation,” Parameter Setting in Evolutionary Algorithms, Studies in Computational Intelligence, Vol. 54, Studies in Computational Intelligence, edited by Lobo F. G., Lima C. F. and Michalewicz Z., Springer, Berlin, 2007, pp. 77–90. doi:https://doi.org/10.1007/978-3-540-69432-8 CrossrefGoogle Scholar

  • [77] Jourdan L., Corne D. W., Savic D. and Walters G., “Hybridising Rule Induction and Multi-Objective Evolutionary Search for Optimising Water Distribution Systems,” Fourth International Conference on Hybrid Intelligent Systems (HIS’04), IEEE Publ., Piscataway, NJ, 2004, pp. 434–439. doi:https://doi.org/10.1109/ICHIS.2004.58 Google Scholar

  • [78] Deb K., Mohan M. and Mishra S., “A Fast Multi-Objective Evolutionary Algorithm for Finding Well-Spread Pareto-Optimal Solutions,” KanGAL Rept.  2003002, Indian Inst. of Technology, Kanpur, India, 2003. Google Scholar

  • [79] Li M., Yang S., Liu X. and Shen R., “A Comparative Study on Evolutionary Algorithms for Many-Objective Optimization,” International Conference on Evolutionary Multi-Criterion Optimization, Vol. 7811, Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer, New York, 2013, pp. 261–275. doi:https://doi.org/10.1007/978-3-642-37140-0_22 CrossrefGoogle Scholar

  • [80] Laumanns M., Thiele L., Deb K. and Zitzler E., “Combining Convergence and Diversity in Evolutionary Multiobjective Optimization,” Evolutionary Computation, Vol. 10, No. 3, 2002, pp. 263–282. doi:https://doi.org/10.1162/106365602760234108 EOCMEO CrossrefGoogle Scholar

  • [81] Liu B., Hsu W., Ma Y. and Ma B., “Integrating Classification and Association Rule Mining,” Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, ACM, New York, 1998, pp. 80–86. Google Scholar

  • [82] Peng H., Long F. and Ding C., “Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 8, 2005, pp. 1226–1238. doi:https://doi.org/10.1109/TPAMI.2005.159 ITPIDJ 0162-8828 CrossrefGoogle Scholar

  • [83] Mayer H., “Air Pollution in Cities,” Atmospheric Environment, Vol. 33, Nos. 24–25, 1999, pp. 4029–4037. doi:https://doi.org/10.1016/S1352-2310(99)00144-2 CrossrefGoogle Scholar

  • [84] Agrawal R. and Srikant R., “Fast Algorithms for Mining Association Rules,” Proceedings of the 20th International Conference on Very Large Data Bases, Very Large Data Base Endowment Inc., Germany, 1994, pp. 487–499. Google Scholar

  • [85] Gong W., Fialho Á., Cai Z. and Li H., “Adaptive Strategy Selection in Differential Evolution for Numerical Optimization: An Empirical Study,” Information Sciences, Vol. 181, No. 24, 2011, pp. 5364–5386. doi:https://doi.org/10.1016/j.ins.2011.07.049 CrossrefGoogle Scholar

  • [86] Krempser E., Fialho Á. and Barbosa H. J. C., “Adaptive Operator Selection at the Hyper-Level,” Parallel Problem Solving from Nature–PPSN 2012, Vol. 7492, Sept. 2012, pp. 378–387. doi:https://doi.org/10.1007/978-3-642-32964-7_38 Google Scholar

  • [87] Thierens D., “Adaptive Operator Selection for Iterated Local Search,” Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics: Second International Workshop, SLS 2009, Springer–Verlag, Berlin, 2009, pp. 140–144. doi:https://doi.org/10.1007/978-3-642-03751-1_15 Google Scholar

  • [88] Maturana J., Lardeux F. and Saubion F., “Autonomous Operator Management for Evolutionary Algorithms,” Journal of Heuristics, Vol. 16, No. 6, 2010, pp. 881–909. doi:https://doi.org/10.1007/s10732-010-9125-3 CrossrefGoogle Scholar

  • [89] Selva D., Cameron B. G. and Crawley E. F., “Rule-Based System Architecting of Earth Observing Systems: Earth Science Decadal Survey,” Journal of Spacecraft and Rockets, Vol. 51, No. 5, 2014, pp. 1505–1521. doi:https://doi.org/10.2514/1.A32656 JSCRAG 0022-4650 LinkGoogle Scholar

  • [90] Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond,” National Research Council of the National Academies, Consensus Study Report, National Academies Press, Washington, D.C., 2007. doi:https://doi.org/10.17226/11820 Google Scholar

  • [91] Wertz J. R., Everett D. F. and Puschell J. J., (eds.), Space Mission Engineering: The New SMAD, Microcosm Press, Hawthorne, CA, 2015. Google Scholar

  • [92] Hadka D. M., “MOEA Framework—A Free and Open Source Java Framework for Multiobjective Optimization. Version 2.12,” 2017, http://moeaframework.org [retrieved 23 Feb. 2018]. Google Scholar

  • [93] Auger A., Bader J., Brockhoff D. and Zitzler E., “Theory of the Hypervolume Indicator: Optimal μ-Distributions and the Choice of the Reference Point,” Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms—FOGA ‘09, ACM, New York, 2009, pp. 87–102. doi:https://doi.org/10.1145/1527125.1527138 Google Scholar

  • [94] Ishibuchi H., Hitotsuyanagi Y., Tsukamoto N. and Nojima Y., “Many-Objective Test Problems to Visually Examine the Behavior of Multiobjective Evolution in a Decision Space,” International Conference on Parallel Problem Solving from Nature, Vol. 6239, Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Pt. 2, Springer, New York, 2010, pp. 91–100. doi:https://doi.org/10.1007/978-3-642-15871-1_10 CrossrefGoogle Scholar

  • [95] Jourdan L., Dhaenens C. and Talbi E.-g., “Using Datamining Techniques to Help Metaheuristics: A Short Survey,” International Workshop on Hybrid Metaheuristics, Lecture Notes in Computer Science: Hybrid Metaheuristics, Springer–Verlag, Berlin, 2006, pp. 57–69. doi:https://doi.org/10.1007/11890584_5 CrossrefGoogle Scholar