Skip to main content
Skip to article control options
No AccessFull-Length Papers

Improving Rule Mining for Entry, Descent, and Landing Simulations Using Knowledge Graphs

Published Online:https://doi.org/10.2514/1.I011063

Designing planetary entry, descent, and landing (EDL) systems requires analyzing large datasets containing tens of thousands of parameters. These datasets are generally manually analyzed by subject-matter experts trying to find interesting correlations and couplings between parameters that explain the behaviors observed. A popular approach to automate the extraction of explanation rules is association rule mining, in which rules with high statistical strength are mined from the dataset. However, current rule mining algorithms generate too many rules that are redundant, too complex, too obvious, or do not make sense to the user. In this paper, we propose a new approach to improve the comprehensibility, insightfulness, and usefulness of the association rules generated during the analysis of an EDL dataset by leveraging a user-provided knowledge graph. The knowledge graph captures the user knowledge about EDL and the specific problem at hand. We then use a statistical relational learning framework based on probabilistic soft logic to assess the degree of consistency of the rule with the user’s knowledge of the system. The method is validated in a small study with N=6 subject-matter experts. The results of the study also show interesting relationships between comprehensibility, usefulness, and insightfulness of the extracted rules.

References

  • [1] Halder A. and Bhattacharya R., “Dispersion Analysis in Hypersonic Flight During Planetary Entry Using Stochastic Liouville Equation,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 2, 2011, pp. 459–474. https://doi.org/10.2514/1.51196 LinkGoogle Scholar

  • [2] Le Moigne J., Dabney P., de Weck O., Foreman V., Grogan P., Holland M., Hughes S. and Nag S., “Tradespace Analysis Tool for Designing Constellations (TAT-C),” 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Inst. of Electrical and Electronics Engineers, New York, 2017, pp. 1181–1184. https://doi.org/10.1109/IGARSS.2017.8127168 Google Scholar

  • [3] Hitomi N., Bang H. and Selva D., “Adaptive Knowledge-Driven Optimization for Architecting a Distributed Satellite System,” Journal of Aerospace Information Systems, Vol. 15, No. 8, 2018, pp. 485–500. https://doi.org/10.2514/1.I010595 LinkGoogle Scholar

  • [4] Virosi Martin A. and Selva D., “Daphne: A Virtual Assistant for Designing Earth Observation Distributed Spacecraft Missions,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 13, Nov. 2019, pp. 30–48. https://doi.org/10.1109/JSTARS.2019.2948921 CrossrefGoogle Scholar

  • [5] Memarzadeh M., Matthews B. and Templin T., “Multiclass Anomaly Detection in Flight Data Using Semi-Supervised Explainable Deep Learning Model,” Journal of Aerospace Information Systems, Vol. 19, No. 2, 2022, pp. 83–97. https://doi.org/10.2514/1.I010959 LinkGoogle Scholar

  • [6] Kefalas M., de Santiago Rojo J., Apostolidis A., van Den Herik D., van Stein B. and Bäck T., “Explainable Artificial Intelligence for Exhaust Gas Temperature of Turbofan Engines,” Journal of Aerospace Information Systems, Vol. 19, No. 6, 2022, pp. 447–454. LinkGoogle Scholar

  • [7] Breazeal C., Kidd C. D., Thomaz A. L., Hoffman G. and Berlin M., “Effects of Nonverbal Communication on Efficiency and Robustness in Human-Robot Teamwork,” 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Inst. of Electrical and Electronics Engineers, New York, 2005, pp. 708–713. https://doi.org/10.1109/IROS.2005.1545011. Google Scholar

  • [8] Newell A. and Simon H. A., Human Problem Solving, Vol. 104, No. 9, Prentice–Hall, Englewood Cliffs, NJ, 1972. Google Scholar

  • [9] García E., Romero C., Ventura S. and Calders T., “Drawbacks and Solutions of Applying Association Rule Mining in Learning Management Systems,” Proceedings of the International Workshop on Applying Data Mining in e-Learning (ADML 2007), Springer-Verlag, Berlin, 2007, pp. 13–22. Google Scholar

  • [10] Geng L. and Hamilton H. J., “Interestingness Measures for Data Mining: A Survey,” ACM Computing Surveys (CSUR), Vol. 38, No. 3, 2006, pp. 9–es. https://doi.org/10.1145/1132960.1132963 CrossrefGoogle Scholar

  • [11] McGarry K., “A Survey of Interestingness Measures for Knowledge Discovery,” Knowledge Engineering Review, Vol. 20, No. 1, 2005, pp. 39–61. https://doi.org/10.1017/S0269888905000408 CrossrefGoogle Scholar

  • [12] Marinica C., Guillet F. and Briand H., “Post-Processing of Discovered Association Rules Using Ontologies,” 2008 IEEE International Conference on Data Mining Workshops, Inst. of Electrical and Electronics Engineers, New York, 2008, pp. 126–133. https://doi.org/10.1109/ICDMW.2008.87 Google Scholar

  • [13] Lenca P., Meyer P., Vaillant B. and Lallich S., “On Selecting Interestingness Measures for Association Rules: User Oriented Description and Multiple Criteria Decision Aid,” European Journal of Operational Research, Vol. 184, No. 2, 2008, pp. 610–626. https://doi.org/10.1016/j.ejor.2006.10.059 CrossrefGoogle Scholar

  • [14] Wakabi-Waiswa P. P. and Baryamureeba V., “Extraction of Interesting Association Rules Using Genetic Algorithms,” International Journal of Computing and ICT Research, Vol. 2, No. 1, 2008, pp. 26–33. Google Scholar

  • [15] Altay E. V. and Alatas B., “Intelligent Optimization Algorithms for the Problem of Mining Numerical Association Rules,” Physica A: Statistical Mechanics and its Applications, Vol. 540, Feb. 2020, Paper 123142. https://doi.org/10.1016/j.physa.2019.123142 CrossrefGoogle Scholar

  • [16] Minaei-Bidgoli B., Barmaki R. and Nasiri M., “Mining Numerical Association Rules Via Multi-Objective Genetic Algorithms,” Information Sciences, Vol. 233, 2013, pp. 15–24. https://doi.org/10.1016/j.ins.2013.01.028 CrossrefGoogle Scholar

  • [17] Agrawal R. and Srikant R., “Fast Algorithms for Mining Association Rules,” Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, Vol. 1215, Morgan Kaufmann Publishers Inc., San Francisco, CA, Sept. 1994, pp. 487–499. Google Scholar

  • [18] Agrawal R., Imieliński T. and Swami A., “Mining Association Rules Between Sets of Items in Large Databases,” Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Assoc. for Computing Machinery, New York, 1993, pp. 207–216. https://doi.org/10.1145/170036.170072 Google Scholar

  • [19] Guillaume S., Grissa D. and Nguifo E. M., “Categorization of Interestingness Measures for Knowledge Extraction,” Preprint, submitted 28 June 2012, https://doi.org/1206.6741. Google Scholar

  • [20] Jalali-Heravi M. and Zaïane O. R., “A Study on Interestingness Measures for Associative Classifiers,” Proceedings of the 2010 ACM Symposium on Applied Computing, Assoc. for Computing Machinery, New York, 2010, pp. 1039–1046. https://doi.org/10.1145/1774088.1774306 Google Scholar

  • [21] Freitas A. A., “On Objective Measures of Rule Surprisingness,” European Symposium on Principles of Data Mining and Knowledge Discovery, Springer, Cham, Switzerland, 1998, pp. 1–9. CrossrefGoogle Scholar

  • [22] Zhang C. and Zhang S., Association Rule Mining: Models and Algorithms, Vol. 2307, Springer, Berlin, 2003, pp. 36–39. Google Scholar

  • [23] Liu B., Hsu W., Mun L.-F. and Lee H.-Y., “Finding Interesting Patterns Using User Expectations,” IEEE Transactions on Knowledge and Data Engineering, Vol. 11, No. 6, 1999, pp. 817–832. https://doi.org/10.1109/69.824588 CrossrefGoogle Scholar

  • [24] Liu B., Hsu W., Chen S. and Ma Y., “Analyzing the Subjective Interestingness of Association Rules,” IEEE Intelligent Systems and Their Applications, Vol. 15, No. 5, 2000, pp. 47–55. https://doi.org/10.1109/5254.889106 CrossrefGoogle Scholar

  • [25] Padmanabhan B. and Tuzhilin A., “Unexpectedness as a Measure of Interestingness in Knowledge Discovery,” Decision Support Systems, Vol. 27, No. 3, 1999, pp. 303–318. https://doi.org/10.1016/S0167-9236(99)00053-6 CrossrefGoogle Scholar

  • [26] Silberschatz A. and Tuzhilin A., “On Subjective Measures of Interestingness in Knowledge Discovery,” KDD Proceedings, Vol. 95, Assoc. for the Advancement of Artificial Intelligence (AAAI) Press, Menlo Park, CA, 1995, pp. 275–281. Google Scholar

  • [27] Chang R., Ziemkiewicz C., Green T. M. and Ribarsky W., “Defining Insight for Visual Analytics,” IEEE Computer Graphics and Applications, Vol. 29, No. 2, 2009, pp. 14–17. https://doi.org/10.1109/MCG.2009.22 CrossrefGoogle Scholar

  • [28] Gasmi G., Yahia S. B., Nguifo E. M. and Bouker S., “Extraction of Association Rules Based on Literalsets,” International Conference on Data Warehousing and Knowledge Discovery, Springer, Berlin, 2007, pp. 293–302. https://doi.org/10.1007/978-3-540-74553-2_27 CrossrefGoogle Scholar

  • [29] Miller G. A., “The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information,” Psychological Review, Vol. 101, No. 2, 1994, Paper 343. https://doi.org/10.1037/0033-295X.101.2.343 CrossrefGoogle Scholar

  • [30] Chase W. G. and Simon H. A., “Perception in Chess,” Cognitive Psychology, Vol. 4, No. 1, 1981, pp. 55–81. https://doi.org/10.1016/0010-0285(73)90004-2 CrossrefGoogle Scholar

  • [31] Gobet F., Lane P. C., Croker S., Cheng P. C., Jones G., Oliver I. and Pine J. M., “Chunking Mechanisms in Human Learning,” Trends in Cognitive Sciences, Vol. 5, No. 6, 2001, pp. 236–243. https://doi.org/10.1016/S1364-6613(00)01662-4 CrossrefGoogle Scholar

  • [32] Krötzsch M., Marx M., Ozaki A. and Thost V., “Attributed Description Logics: Ontologies for Knowledge Graphs,” International Semantic Web Conference, Springer, Cham, Switzerland, 2017, pp. 418–435. https://doi.org/10.1007/978-3-319-68288-4_25 Google Scholar

  • [33] Wang Q., Mao Z., Wang B. and Guo L., “Knowledge Graph Embedding: A Survey of Approaches and Applications,” IEEE Transactions on Knowledge and Data Engineering, Vol. 29, No. 12, 2017, pp. 2724–2743. https://doi.org/10.1109/TKDE.2017.2754499 CrossrefGoogle Scholar

  • [34] Ehrlinger L. and Wöß W., “Towards a Definition of Knowledge Graphs,” SEMANTICS 2016: (Posters, Demos, SuCCESS), Vol. 48, CEUR Workshop Proceedings, Aachen, 2016, pp. 1–4. Google Scholar

  • [35] Guo Q., Zhuang F., Qin C., Zhu H., Xie X., Xiong H. and He Q., “A Survey on Knowledge Graph-Based Recommender Systems,” Preprint, submitted 28 Feb. 2020, https://doi.org/2003.00911. Google Scholar

  • [36] Li J., Ge B., Yang K., Chen Y. and Tan Y., “Meta-Path Based Heterogeneous Combat Network Link Prediction,” Physica A: Statistical Mechanics and its Applications, Vol. 482, Sept. 2017, pp. 507–523. https://doi.org/10.1016/j.physa.2017.04.126 CrossrefGoogle Scholar

  • [37] Martínez V., Berzal F. and Cubero J.-C., “A Survey of Link Prediction in Complex Networks,” ACM Computing Surveys (CSUR), Vol. 49, No. 4, 2016, pp. 1–33. https://doi.org/10.1145/3012704 CrossrefGoogle Scholar

  • [38] Liben-Nowell D. and Kleinberg J., “The Link-Prediction Problem for Social Networks,” Journal of the American Society for Information Science and Technology, Vol. 58, No. 7, 2007, pp. 1019–1031. https://doi.org/10.1002/asi.20591 CrossrefGoogle Scholar

  • [39] Dumancic S., Garcia-Duran A. and Niepert M., “A Comparative Study of Distributional and Symbolic Paradigms for Relational Learning,” Preprint, submitted 29 June 2018, https://doi.org/1806.11391. Google Scholar

  • [40] Cheng K., Yang Z., Zhang M. and Sun Y., “UniKER: A Unified Framework for Combining Embedding and Definite Horn Rule Reasoning for Knowledge Graph Inference,” Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021, pp. 9753–9771. https://doi.org/10.1109/MCG.2006.70 Google Scholar

  • [41] Sileo D., Van-De-Cruys T., Pradel C. and Muller P., “Composition of Sentence Embeddings: Lessons from Statistical Relational Learning,” Preprint, submitted 4 April 2019. https://doi.org/1904.02464 Google Scholar

  • [42] Raedt L. D., Kersting K., Natarajan S. and Poole D., “Statistical Relational Artificial Intelligence: Logic, Probability, and Computation,” Synthesis Lectures on Artificial Intelligence and Machine Learning, Vol. 10, No. 2, 2016, pp. 1–189. https://doi.org/10.2200/S00692ED1V01Y201601AIM032 CrossrefGoogle Scholar

  • [43] Kersting K., De Raedt L. and Kramer S., “Interpreting Bayesian Logic Programs,” Proceedings of the AAAI-2000 Workshop on Learning Statistical Models from Relational Data, Assoc. for the Advancement of Artificial Intelligence (AAAI) Press, Menlo Park, CA, 2000, pp. 29–35. Google Scholar

  • [44] Muggleton S. and De Raedt L., “Inductive Logic Programming: Theory and Methods,” Journal of Logic Programming, Vols. 19–20, May–July 1994, pp. 629–679. https://doi.org/10.1016/0743-1066(94)90035-3 CrossrefGoogle Scholar

  • [45] Richardson M. and Domingos P., “Markov Logic Networks,” Machine Learning, Vol. 62, Nos. 1–2, 2006, pp. 107–136. https://doi.org/10.1007/s10994-006-5833-1 CrossrefGoogle Scholar

  • [46] Bach S. H., Broecheler M., Huang B. and Getoor L., “Hinge-Loss Markov Random Fields and Probabilistic Soft Logic,” Preprint, submitted 16 May 2015, https://doi.org/1505.04406. Google Scholar

  • [47] Sztyler T., Civitarese G. and Stuckenschmidt H., “Modeling and Reasoning with ProbLog: an Application in Recognizing Complex Activities,” 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), IEEE, New York, 2018, pp. 259–264. https://doi.org/10.1109/PERCOMW.2018.8480299 CrossrefGoogle Scholar

  • [48] Wittek P. and Gogolin C., “Quantum Enhanced Inference in Markov Logic Networks,” Scientific Reports, Vol. 7, No. 1, April 2017, Paper 45672. https://doi.org/10.1038/srep45672 CrossrefGoogle Scholar

  • [49] Bach S. H., Broecheler M., Huang B. and Getoor L., “Hinge-Loss Markov Random Fields and Probabilistic Soft Logic,” Journal of Machine Learning Research, Vol. 18, No. 1, 2017, pp. 3846–3912. Google Scholar

  • [50] Kimmig A., Bach S., Broecheler M., Huang B. and Getoor L., “A Short Introduction to Probabilistic Soft Logic,” Proceedings of the NIPS Workshop on Probabilistic Programming: Foundations and Applications, 2012, pp. 1–4. Google Scholar

  • [51] Kundu S. and Chen J., “Fuzzy Logic or Lukasiewicz Logic: A Clarification,” Fuzzy Sets and Systems, Vol. 95, No. 3, 1998, pp. 369–379. https://doi.org/10.1016/S0165-0114(96)00268-0 CrossrefGoogle Scholar

  • [52] Santini De Leon S., Selva D. and Way D. W., “Interactive Explanation of Entry, Descent, and Landing Simulations,” AIAA SciTech 2020 Forum, AIAA Paper 2020-2094, 2020. https://doi.org/10.2514/6.2020-2094 Google Scholar

  • [53] Striepe S. A., Way D. W., Dwyer A. M. and Balaram J., “Mars Science Laboratory Simulations for Entry, Descent, and Landing,” Journal of Spacecraft and Rockets, Vol. 43, No. 2, 2006, pp. 311–323. https://doi.org/10.2514/1.19649 LinkGoogle Scholar

  • [54] Hussein N., Alashqur A. and Sowan B., “Using the Interestingness Measure Lift to Generate Association Rules,” Journal of Advanced Computer Science and Technology, Vol. 4, No. 1, 2015, Paper 156. https://doi.org/10.14419/jacst.v4i1.4398 CrossrefGoogle Scholar

  • [55] McNicholas P. D., Murphy T. B. and O’Regan M., “Standardising the Lift of an Association Rule,” Computational Statistics and Data Analysis, Vol. 52, No. 10, 2008, pp. 4712–4721. https://doi.org/10.1016/j.csda.2008.03.013 CrossrefGoogle Scholar

  • [56] North C., “Toward Measuring Visualization Insight,” IEEE Computer Graphics and Applications, Vol. 26, No. 3, 2006, pp. 6–9. https://doi.org/10.1109/MCG.2006.70 CrossrefGoogle Scholar