Skip to main content
Skip to article control options
No AccessFull-Length Paper

Large-Eddy Simulation of an Oscillating Cylinder in a Steady Flow

Published Online:https://doi.org/10.2514/1.J050653

In this work, large-eddy simulation is used to study the flow around a circular cylinder undergoing streamwise sinusoidal oscillations. This benchmark case is a first step toward studying engineering applications related to flow-induced vibrations. Both the flow physics, which correlate the flow development with the time varying loading of the cylinder at two different oscillation frequencies, as well as a validation of the fluid structure interaction methodology through comparison with experimental data for the same configuration are described. With the methodology used, large-eddy simulation based on a finite volume method capable of handling moving meshes gives force predictions that generally agree well with experimentally measured data, both with respect to the overall flow development as with force magnitude.

References

  • [1] Ongoren A. and Rockwell D., “Flow Structure from an Oscillating Cylinder Part 2. Mode Competition in the Near Wake,” Journal of Fluid Mechanics, Vol. 191, 1988, pp. 225–245. JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [2] Williamson C. H. K. and Roshko A., “Vortex Formation in the Wake of an Oscillating Cylinder,” Journal of Fluids and Structures, Vol. 2, No. 4, 1988, pp. 355–381. doi:https://doi.org/10.1016/S0889-9746(88)90058-8 0889-9746 CrossrefGoogle Scholar

  • [3] Cetiner O. and Rockwell D., “Streamwise Oscillations of a Cylinder in a Steady Current. Part 1. Locked-on States of Vortex Formation and Loading,” Journal of Fluid Mechanics, Vol. 427, 2001, pp. 1–28. JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [4] Cetiner O. and Rockwell D., “Streamwise Oscillations of a Cylinder in a Steady Current. Part 2. Free-Surface Effects on Vortex Formation and Loading,” Journal of Fluid Mechanics, Vol. 427, 2001, pp. 29–59. JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [5] Cetiner O., “Flow Structure and Loading due to an Oscillating Cylinder in a Steady Current,” Ph.D Dissertation, Dept. of Mechanical Engineering and Mechanics, Lehigh Univ., Bethlehem, Pennsylvania, 1998. Google Scholar

  • [6] Lee T., “Investigation of Unsteady Boundary Layer Developed on a Rotationally Oscillating Circular Cylinder,” AIAA Journal, Vol. 37, No. 3, 1999, pp. 328–336. AIAJAH 0001-1452 LinkGoogle Scholar

  • [7] Keun-Shik C. and Jong-Youb S., “Patterns of Vortex Shedding from an Oscillating Circular Cylinder,” AIAA Journal, Vol. 30, No. 5, 1992, pp. 1331–1336. AIAJAH 0001-1452 LinkGoogle Scholar

  • [8] Jones J. D. and Fuller C. R., “Noise Control Characteristics of Synchrophasing. II—Experimental Investigation,” AIAA Journal, Vol. 24, No. 8, 1986, pp. 1271–1276. doi:https://doi.org/10.2514/3.9431 AIAJAH 0001-1452 LinkGoogle Scholar

  • [9] Liefvendahl M. and Lillberg E., “Computational Methods for Unsteady Fluid Force Predictions Using Moving Mesh Large Eddy Simulations,” AIAA Paper  2005-4144, 2005. LinkGoogle Scholar

  • [10] Lu X. Y. and Dalton C., “Calculation of the Timing of Vortex Formation from an Oscillating Cylinder,” Journal of Fluids and Structures, Vol. 10, No. 5, 1996, pp. 527–541. doi:https://doi.org/10.1006/jfls.1996.0035 0889-9746 CrossrefGoogle Scholar

  • [11] Saritas M. and Cetiner O., “Flow Structure and Loading due to an Oscillating Cylinder in Steady Current,” Proceedings of the 7th International Symposium on Fluid Control, Measurement and Visualization, Sorrento, Italy, 25–28 Aug. 2003. Google Scholar

  • [12] Pope S. B., Turbulent Flows, Cambridge Univ. Press, Cambridge, England, U.K., 2000. CrossrefGoogle Scholar

  • [13] Hsiao C.-T. and Pauley L., “Direct Numerical Simulation of Unsteady Finite-Span Hydrofoil Flow,” AIAA Journal, Vol. 37, No. 5, 1999, pp. 529–536. doi:https://doi.org/10.2514/2.759 AIAJAH 0001-1452 LinkGoogle Scholar

  • [14] Sagaut P., Large Eddy Simulation for Incompressible Flows, 3rd ed., Springer–Verlag, Berlin, 2006. Google Scholar

  • [15] Grinstein F. F., Margolin L. and Rider B., Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, 1st ed., Cambridge Univ. Press, Cambridge, England, U.K., 2007. CrossrefGoogle Scholar

  • [16] Lesieur M. and Metais O., “New Trends in Large Eddy Simulations of Turbulence,” Annual Review of Fluid Mechanics, Vol. 28, 1996, pp. 45–82. doi:https://doi.org/10.1146/annurev.fl.28.010196.000401 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [17] Fureby C., “Towards the use of Large Eddy Simulation in Engineering,” Progress in Aerospace Sciences, Vol. 44, No. 6, 2008, pp. 381–396. doi:https://doi.org/10.1016/j.paerosci.2008.07.003 PAESD6 0376-0421 CrossrefGoogle Scholar

  • [18] Wilcox D. C., Turbulence Modelling for CFD, 3rd ed., DCW Industries, Inc., California, 2006. Google Scholar

  • [19] Smagorinsky J., “General Circulation Experiments With the Primitive Equations I. The Basic Experiment,” Monthly Weather Review, Vol. 91, No. 3, 1963, pp. 99–164. doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 MWREAB 0027-0644 CrossrefGoogle Scholar

  • [20] Metais O. and Lesieur M., “Spectral Large Eddy Simulation of Isotropic and Stably Stratified Turbulence,” Journal of Fluid Mechanics, Vol. 239, 1992, pp. 157–194. doi:https://doi.org/10.1017/S0022112092004361 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [21] Schumann U., “Subgrid Scale Model for Finite Difference Simulation of Turbulent Flows in Plane Channels and Annuli,” Journal of Computational Physics, Vol. 18, No. 4, 1975, pp. 376–404. JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [22] Germano M., Piomelli U., Moin P. and Cabot W. H., “A Dynamic Subgrid-Scale Eddy Viscosity Model,” Physics of Fluids, Vol. 3, No. 7, 1994, pp. 1760–1765. PHFLE6 1070-6631 CrossrefGoogle Scholar

  • [23] Menon S. and Kim W.-W., “High Reynolds Number Flow Simulations Using the Localized Dynamic Subgrid-Scale Model,” AIAA Paper  1996-425, 1996. LinkGoogle Scholar

  • [24] Bardina J., Ferziger J. H. and Reynolds W. C., “Improved Subgrid-Scale Models for Large-Eddy Simulations,” AIAA Paper  1980-1357, 1980. LinkGoogle Scholar

  • [25] Liu S., Meneveau C. and Katz J., “On the Properties of Similarity Subgrid-Scale Models as Deduced from Measurements in a Turbulent Jet,” Journal of Fluid Mechanics, Vol. 275, 1994, pp. 83–119. doi:https://doi.org/10.1017/S0022112094002296 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [26] Bensow R. E. and Fureby C., “On the Justification and Extension of Mixed Models in LES,” Journal of Turbulence, Vol. 8, No. 54, 2007. Google Scholar

  • [27] Weller H. G., Tabor G., Jasak H. and Fureby C., “A Tensorial Approach to Computational Continuum Mechanics Using Object Oriented Techniques,“ Computers in Physics, Vol. 12, No. 6, 1998, pp. 620–631. doi:https://doi.org/10.1063/1.168744 CPHYE2 0894-1866 CrossrefGoogle Scholar

  • [28] Lambert J. D., Computational Methods in Ordinary Differential Equations, 1st ed., Wiley, New York, 1973. Google Scholar

  • [29] Rhie C. M. and Chow W. L., “Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation,” AIAA Journal, Vol. 21, No. 11, 1983, pp. 1525–1532. doi:https://doi.org/10.2514/3.8284 AIAJAH 0001-1452 LinkGoogle Scholar

  • [30] Demirdzic I. and Peric M., “Space Conservation Law in Finite Volume Calculations of Fluid Flow,” International Journal for Numerical Methods in Fluids, Vol. 8, No. 9, 1988, pp. 1037–1050. doi:https://doi.org/10.1002/(ISSN)1097-0363 IJNFDW 0271-2091 CrossrefGoogle Scholar

  • [31] Fureby C., “On LES and DES of Wall Bounded Flows,” Ercoftac Bulletin, March 2007. Google Scholar

  • [32] Drikakis D., Fureby C., Grinstein F. F. and Youngs D., “Simulations of Transition and Turbulence Decay in the Taylor-Green Vortex,” Journal of Turbulence, Vol. 8, No. 20, 2007. Google Scholar

  • [33] Fureby C., Tabor G., Weller H. G. and Gosman A. D., “A Comparative Study of Subgrid Scale Models in Homogeneous Isotropic Turbulence,“ Physics of Fluids, Vol. 9, No. 5, 1997, pp. 1416–1429. PHFLE6 1070-6631 CrossrefGoogle Scholar

  • [34] Svennberg U. and Fureby C., “LES Computation of the Flow Over a Smoothly Contoured Ramp,” AIAA Paper  2003-965, 2003. LinkGoogle Scholar

  • [35] Persson T., Liefevendahl M., Bensow R. E. and Fureby C., “Numerical Investigation of the Flow over an Axisymmetric Hill Using LES, DES and RANS,” Journal of Turbulence, Vol. 7, No. 4, 2006. Google Scholar

  • [36] Fureby C. and Bensow R. E., “LES at Work: Quality Management in Practical Large-Eddy Simulations,” ERCOFTAC Series, Vol. 12, 2008, pp. 239–258. ERSEFY 1382-4309 CrossrefGoogle Scholar

  • [37] Wikström N., Svennberg U., Alin N. and Fureby C., “LES of the Flow Past an Inclined Prolate Spheroid,” Journal of Turbulence, Vol. 5, No. 29, 2004. Google Scholar

  • [38] Karlsson A. and Fureby C., “LES of the Flow Past a Prolate Spheroid,” AIAA Paper  2009-1616, 2009. Google Scholar

  • [39] Alin N., Bensow R. E., Fureby C., Huuva T. and Svennberg U., “Current Capabilities of DES and LES for Submarines at Straight Course,” Journal of Ship Research, Vol. 54, No. 3, 2010, pp. 184–196. CrossrefGoogle Scholar

  • [40] Alin N., Fureby C., Parmhed O. and Svennberg U., “Large Eddy Simulation Past the DTMB 5415 Hull,” Proceedings of 27th Symposium on Naval Hydrodynamics, Vol. 2, Seoul, Korea, 2008, pp. 217–231. Google Scholar

  • [41] Fureby C., Grinstein F. F., Li G. and Gutmark E. J., “An Experimental and Computational Study of a Multi-Swirl Gas Turbine Combustor,” Proceedings of the Combustion Institute, Vol. 31, No. 2, 2007, pp. 3107–3114. doi:https://doi.org/10.1016/j.proci.2006.07.127 1540-7489 CrossrefGoogle Scholar

  • [42] Fureby C., “LES of a Multi-Burner Annular Gas Turbine Combustor,” Flow, Turbulence and Combustion, Vol. 84, No. 3, 2010, pp. 543–564. FTCOF9 1386-6184 CrossrefGoogle Scholar

  • [43] Berglund M., Fureby C., Sabel’nikov V. and Tegnér J., “On the Influence of Finite Rate Chemistry in LES of Supersonic Combustion,” Proceedings of 32nd International Symposium on Combustion, Montreal, Canada, 2008. Google Scholar

  • [44] Lourenco L. and Shih C., “Characteristics of the Plane Turbulent Near Wake of a Circular Cylinder. A Particle Image Velocimetry Study,” 1993. (experimental data taken from [45]). Google Scholar

  • [45] Ma X., Karamons G.-S. and Karniadakis G. E., “Dynamics and Low-Dimensionality of a Turbulent Near Wake,” Journal of Fluid Mechanics, Vol. 410, 2000, pp. 29–65. doi:https://doi.org/10.1017/S0022112099007934 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [46] Ong L. and Wallace J., “The Velocity Field of the Turbulent Very Near Wake of a Circular Cylinder,” Experiments in Fluids, Vol. 20, No. 6, 1996, pp. 441–453. doi:https://doi.org/10.1007/BF00189383 EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [47] Tremblay F., “Direct and Large-Eddy Simulation of Flow Around a Circular Cylinder at Subcritical Reynolds Number,” Ph.D Dissertation, Fachgebiet Strömungsmechanik, Technische Univerität München, Munich, Germany, 2001. Google Scholar

  • [48] Cundy H. and Rollett A., “Lissajous’s Figures,” Mathematical Models, 3rd ed., Traquin, Stradbroke, England, U.K., 1997, pp. 242–244. Google Scholar