Skip to main content
Skip to article control options
No AccessFluid Dynamics

Fluid Dynamics of Pitching and Plunging Flat Plate at Intermediate Reynolds Numbers

Published Online:https://doi.org/10.2514/1.J051593

A combined numerical and experimental study of two- and three-dimensional pitching and plunging flat plates at Reynolds numbers of O(104) is presented. The focus of this paper is the interplay between the geometry, kinematics, Reynolds numbers, and three-dimensional effects with the resulting aerodynamic forces and flow structures. A shallow-stall and a deep-stall motion with higher maximum effective angles of attacks are considered. Under both kinematic motions, massive leading-edge separation is observed at the sharp leading edge of the flat plate. This geometric effect is seen to dominate over other viscosity effects, and the Reynolds number dependence is limited. Compared with the blunter SD7003 airfoil, where the flow is mostly attached for the shallow-stall motion at Re=6×104, the sharper leading edge of the flat plate leads to earlier and stronger leading-edge vortex formation and greater lift and drag. Finally, the presence of a tip vortex significantly reduces lift generation during the downstroke of an aspect ratio 2 flat plate undergoing the shallow-stall motion. During the upstroke, the tip vortex is weaker and the force on the aspect ratio 2 wing can be approximated by its two-dimensional counterpart.

References

  • [1] Shyy W., Lian Y., Tang J., Viieru D. and Liu H., Aerodynamics of Low Reynolds Number Flyers, Cambridge Univ. Press, New York, 2008, pp. 1–158. CrossrefGoogle Scholar

  • [2] Shyy W., Aono H., Chimakurthi S. K., Trizila P., Kang C.-K., Cesnik C. E. S. and Liu H., “Recent Progress in Flapping Wing Aerodynamics and Aeroelasticity,” Progress in Aerospace Sciences, Vol. 46, No. 7, 2010, pp. 284–327. doi:https://doi.org/10.1016/j.paerosci.2010.01.001 PAESD6 0376-0421 CrossrefGoogle Scholar

  • [3] Sane P. S. and Dickinson M. H., “The Control of Flight Force by a Flapping Wing: Lift and Drag Production,” Journal of Experimental Biology, Vol. 204, No. 15, 2001, pp. 2607–2626. JEBIAM 0022-0949 CrossrefGoogle Scholar

  • [4] Poelma C. and Dickinson M. H., “Time-Resolved Reconstruction of the Full Velocity Field Around a Dynamically-Scaled Flapping Wing,” Experiments in Fluids, Vol. 41, No. 2, 2006, pp. 213–225. doi:https://doi.org/10.1007/s00348-006-0172-3 EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [5] Shyy W., Trizila P., Kang C. and Aono H., “Can Tip Vortices Enhance Lift of a Flapping Wing?,” AIAA Journal, Vol. 47, No. 2, 2009, pp. 289–293. doi:https://doi.org/10.2514/1.41732 AIAJAH 0001-1452 LinkGoogle Scholar

  • [6] Usherwood J. R. and Ellington C. P., “The Aerodynamics of Revolving Wings I. Model Hawkmoth Wings,” Journal of Experimental Biology, Vol. 205, No. 11, 2002, pp. 1547–1564. JEBIAM 0022-0949 CrossrefGoogle Scholar

  • [7] Taira K. and Colonius T., “Three-dimensional Flows Around Low-Aspect-Ratio Wings at Low Reynolds Numbers,” Journal of Fluid Mechanics, Vol. 623, March 2009, pp. 187–207. doi:https://doi.org/10.1017/S0022112008005314 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [8] Dong H., Mittal R. and Najjar F. M., “Wake Topology and Hydrodynamic Performance of Low-aspect-ratio Flapping Foils,” Journal of Fluid Mechanics, Vol. 566, Nov. 2006, pp. 309–343. doi:https://doi.org/10.1017/S002211200600190X JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [9] Taylor G. K., Nudds R. L. and Thomas A. L. R., “Flying and Swimming Animals Cruise at a Strouhal Number Tuned for High Power Efficiency,” Nature, Vol. 425, No. 6959, 2003, pp. 707–711. CrossrefGoogle Scholar

  • [10] Tang J., Viieru D. and Shyy W., “Effects of Reynolds Number and Flapping Kinematics on Hovering Aerodynamics,” AIAA Journal, Vol. 46, No. 4, 2008, pp. 967–976. doi:https://doi.org/10.2514/1.32191 AIAJAH 0001-1452 LinkGoogle Scholar

  • [11] Trizila P., Kang C., Visbal M. R. and Shyy W., “Low-Reynolds-Number Aerodynamics of a Flapping Rigid Flat Plate,” AIAA Journal, Vol. 49, No. 4, 2011, pp. 806–823. doi:https://doi.org/10.2514/1.J050827 AIAJAH 0001-1452 LinkGoogle Scholar

  • [12] Wang Z. J., Birch J. M. and Dickinson M. H., “Unsteady Forces and Flows in Low Reynolds Number Hovering Flight: Two-Dimensional Computations vs Robotic Wing Experiments,” Journal of Experimental Biology, Vol. 207, No. 3, 2004, pp. 449–460.doi:https://doi.org/10.1242/jeb.00739 JEBIAM 0022-0949 CrossrefGoogle Scholar

  • [13] Shyy W. and Liu H., “Flapping Wings and Aerodynamic Lift: The Role of Leading-Edge Vortices,” AIAA Journal, Vol. 45, No. 12, 2007, pp. 2817–2819. doi:https://doi.org/10.2514/1.33205 AIAJAH 0001-1452 LinkGoogle Scholar

  • [14] Ramamurti R. and Sandberg W. C., “A Computational Investigation of the Three-Dimensional Unsteady Aerodynamics of Drosophila Hovering and Maneuvering,” Journal of Experimental Biology, Vol. 210, No. 5, 2007, pp. 881–896. doi:https://doi.org/10.1242/jeb.02704 JEBIAM 0022-0949 CrossrefGoogle Scholar

  • [15] Aono H., Liang F. and Liu H., “Near- and Far-field Aerodynamic in Insect Hovering Flight: An Integrated Computational Study,” Journal of Experimental Biology, Vol. 211, No. 2, 2008, pp. 239–257. doi:https://doi.org/10.1242/jeb.008649 JEBIAM 0022-0949 CrossrefGoogle Scholar

  • [16] Nano Hummingbird,” Aerovironment Inc., http://www.avinc.com/nano [retrieved 28 Feb. 2011]. Google Scholar

  • [17] Festo, “SmartBird—Bird Flight Deciphered,” http://www.festo.com/cms/en_corp/11369.htm [retrieved 1 March 2011]. Google Scholar

  • [18] Anderson J. M., Streitlin K., Barrett D. S. and Triantafyllou M. S., “Oscillating Foils of High Propulsive Efficiency,” Journal of Fluid Mechanics, Vol. 360, April 1998, pp. 41–72. doi:https://doi.org/10.1017/S0022112097008392 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [19] Read D. A., Hover J. S. and Triantafyllou M. S., “Forces on Oscillating Foils for Propulsion and Maneuvering,” Journal of Fluids and Structures, Vol. 17, No. 1, 2003, pp. 163–183. doi:https://doi.org/10.1016/S0889-9746(02)00115-9 0889-9746 CrossrefGoogle Scholar

  • [20] Hover F. S., Haugsdal O. and Triantafyllou M. S., “Effect of Angle of Attack Profiles in Flapping Foil Propulsion,” Journal of Fluids and Structures, Vol. 19, No. 1, 2004, pp. 37–47. doi:https://doi.org/10.1016/j.jfluidstructs.2003.10.003 0889-9746 CrossrefGoogle Scholar

  • [21] Schouveiler L., Hover F. S. and Triantafyllou M. S., “Performance of Flapping Foil Propulsion,” Journal of Fluids and Structures, Vol. 20, No. 7, 2005, pp. 949–959. doi:https://doi.org/10.1016/j.jfluidstructs.2005.05.009 0889-9746 CrossrefGoogle Scholar

  • [22] Lai J. C. S. and Platzer M. F., “Jet Characteristics of a Plunging Airfoil,” AIAA Journal, Vol. 37, No. 12, 1999, pp. 1529–1537.doi:https://doi.org/10.2514/2.641 AIAJAH 0001-1452 LinkGoogle Scholar

  • [23] Lentink D. and Gerritsma M., “Influence of Airfoil Shape on Performance in Insect Flight,” AIAA Paper  2003-3447, 2003. LinkGoogle Scholar

  • [24] Usherwood J. R. and Ellington C. P., “The Aerodynamics of Revolving Wings I. Model Hawkmoth Wings,” Journal of Experimental Biology, Vol. 205, No. 11, 2002, pp.1547–1564. JEBIAM 0022-0949 CrossrefGoogle Scholar

  • [25] Sane S. P., “The Aerodynamics of Insect Flight,” Journal of Experimental Biology, Vol. 206, No. 23, Dec. 2003, pp. 4191–4208. doi:https://doi.org/10.1242/jeb.00663 JEBIAM 0022-0949 CrossrefGoogle Scholar

  • [26] Polhamus E., “Predictions of Vortex-Lift Characteristics by a Leading-edge Suction analogy,” Journal of Aircraft, Vol. 8, No. 4, 1971, pp. 193–199. doi:https://doi.org/10.2514/3.44254 JAIRAM 0021-8669 LinkGoogle Scholar

  • [27] Ashraf M. A., Young J. and Lai J. C. S., “Reynolds Number, Thickness and Camber Effects on Flapping Airfoil Propulsion,” Journal of Fluids and Structures, Vol. 27, No. 2, 2011, pp. 145–160. doi:https://doi.org/10.1016/j.jfluidstructs.2010.11.010 0889-9746 CrossrefGoogle Scholar

  • [28] Kang C., Baik Y., Bernal L., Ol M. V. and Shyy W., “Fluid Dynamics of Pitching and Plunging Airfoils of Reynolds Number Between 1×104 and 6×104,” AIAA Paper  2009-536, 2009. Google Scholar

  • [29] Kang C., Aono H., Trizila P., Baik Y., Rausch J. M., Bernal L., Ol M. V. and Shyy W., “Modeling of Pitching and Plunging Airfoils of Reynolds Number Between 1×104 and 6×104,” AIAA Paper  2009-4100, 2009. Google Scholar

  • [30] Ol M., Bernal L., Kang C. and Shyy W., “Shallow and Deep Dynamic Stall for Flapping Low Reynolds Number Airfoils,” Experiments in Fluids, Vol. 46, No. 5, 2009, pp. 883–901. doi:https://doi.org/10.1007/s00348-009-0660-3 EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [31] Baik Y., Rausch J. M., Bernal L. P. and Ol M. V., “Experimental Investigation of Pitching and Plunging Airfoils at Reynolds Number Between 1×104 and 6×104,” AIAA Paper  2009-4030, 2009. Google Scholar

  • [32] Rausch J. M., Baik Y., Bernal L. P. and Ol M. V., “Effect of Aspect Ratio on Rigid Lifting Flat Plates in Pitch-Plunge Motion at Low Reynolds Numbers,” AIAA Paper  2010-389, 2010. LinkGoogle Scholar

  • [33] Menter F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Application,” AIAA Journal, Vol. 32, No. 8, 1994, pp. 269–289. doi:https://doi.org/10.2514/3.12149 AIAJAH 0001-1452 LinkGoogle Scholar

  • [34] Menter F. R., Kuntz M. and Langtry R., “Ten Years of Industrial Experience with the SST Turbulence Model,” Turbulence, Heat and Mass Transfer 4, edited by Hanjalic K., Nagano Y. and Tummers M., Begell House, Redding, CT, 2003, pp. 625–632. Google Scholar

  • [35] Wright J. A. and Smith R. W., “An Edge-Based Method for the Incompressible Navier–Stokes Equations on Polygonal Meshes,” Journal of Computational Physics, Vol. 169, No. 1, 2001, pp. 24–43. doi:https://doi.org/10.1006/jcph.2001.6705 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [36] Smith R. W. and Wright J. A., “An Implicit Edge-Based ALE Method for the Incompressible Navier-Stokes Equations,” International Journal of Numerical Methods in Fluids, Vol. 43, No. 3, 2003, pp. 253–279.doi:https://doi.org/10.1002/fld.606 CrossrefGoogle Scholar

  • [37] Kamakoti R., Thakur S., Wright J. and Shyy W., “Validation of a New Parallel All-Speed CFD Code in a Rule-Based Framework for Multidisciplinary Applications,” AIAA Paper  2006-3063, 2006. LinkGoogle Scholar

  • [38] Balay S., Gropp W. D., McInnes L. C. and Smith B. F., “Efficient Management of Parallelism in Object Oriented Numerical Software Libraries,” Modern Software Tools in Scientific Computing, Birkhauser Boston, Cambridge, MA, 1997, pp. 163–202. Google Scholar

  • [39] Balay S., Brown J., Buschelman K., Eijkhout V., Gropp W. D., Kaushik D., Knepley M. G., McInnes L. C., Smith B. F. and Zhang H., “PETSc Users Manual,” Argonne National Lab., ANL-95/11, Argonne, IL, 2010. Google Scholar

  • [40] Balay S., Brown J., Buschelman K., Gropp W. D., Kaushik D., Knepley M. G., McInnes L. C., Smith B. F. and Zhang H., “PETSc Web page,” http://www.mcs.anl.gov/petsc [retrieved 1 March 2011]. Google Scholar

  • [41] Falgout R. and Yang U., “Hypre: A Library of High Performance Preconditioners,” Computational Science—ICCS 2002, edited by Sloot P., Hoekstra A., Tan C. and Dongarra J., Springer–Verlag, Berlin, 2002, pp. 632–641. Google Scholar

  • [42] Luke E. A. and George T., “Loci: A Rule-Based Framework for Parallel Multi-disciplinary Simulation Synthesis,” Journal of Functional Programming, Vol. 15, No. 03, 2005, pp. 477–502. doi:https://doi.org/10.1017/S0956796805005514 JFPRES 0956-7968 CrossrefGoogle Scholar

  • [43] Thomas P. D. and Lombard K., “Geometric Conservation Law and Its Application to Flow Computations on Moving Grids,” AIAA Journal, Vol. 17, No. 10, 1979, pp. 1030–1037. doi:https://doi.org/10.2514/3.61273 AIAJAH 0001-1452 LinkGoogle Scholar

  • [44] Kamakoti R. and Shyy W., “Evaluation of Geometric Conservation Law Using Pressure-Based Fluid Solver and Moving Grid Technique,” International Journal of Heat and Fluid Flow, Vol. 14, No. 7, 2004, pp. 851–865.doi:https://doi.org/10.1108/09615530410546254 IJHFD2 0142-727X CrossrefGoogle Scholar

  • [45] Kang C., Aono H., Cesnik C. E. S. and Shyy W., “Effects of Flexibility on the Aerodynamic Performance of Flapping Wings,” Journal of Fluid Mechanics, Vol. 689, Dec. 2011, pp. 32–74. doi:https://doi.org/10.1017/jfm.2011.428 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [46] Visbal M., “Numerical Investigation of Deep Dynamic Stall of a Plunging Airfoil,” AIAA Journal, Vol. 49, No. 10, 2011, pp. 2152–2170. doi:https://doi.org/10.2514/1.J050892 AIAJAH 0001-1452 LinkGoogle Scholar

  • [47] Doligalski T. L., Smith C. R. and Walker D. A., “Vortex Interaction with Walls,” Annual Review of Fluid Mechanics, Vol. 26, No. 1, 1994, pp. 573–616. doi:https://doi.org/10.1146/annurev.fl.26.010194.003041 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [48] Walker J. D. A., “The Boundary Layer Due to Rectilinear Vortex,” Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, Vol. 359, No. 1697, 1978, pp. 167–188.doi:https://doi.org/10.1098/rspa.1978.0038 PRLAAZ 1364-5021 CrossrefGoogle Scholar

  • [49] Gendrich C. P., Koochesfahani M. M. and Visbal M. R., “Initial Acceleration Effects on the Flow Field Development Around Rapidly Pitching Airfoils,” AIAA Paper  1993-0438, 1993. LinkGoogle Scholar

  • [50] Ghosh Choudhuri P., Knight D. D. and Visbal M. R., “Two-Dimensional Unsteady Leading-Edge Separation on a Pitching Airfoil,” AIAA Journal, Vol. 32, No. 4, 1994, pp. 673–681.doi:https://doi.org/10.2514/3.12040 AIAJAH 0001-1452 LinkGoogle Scholar

  • [51] Perry A. E., Chong M. S. and Lim T. T., “The Vortex-Shedding Process Behind Two-Dimensional Bluff Bodies,” Journal of Fluid Mechanics, Vol. 116, March 1982, pp. 77–90. doi:https://doi.org/10.1017/S0022112082000378 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [52] Visbal M., “High-Fidelity Simulation of Transitional Flows past a Plunging Airfoil,” AIAA Journal, Vol. 47, No. 11, 2009, pp. 2685–2697. doi:https://doi.org/10.2514/1.43038 AIAJAH 0001-1452 LinkGoogle Scholar

  • [53] Visbal M., “Three-Dimensional Flow Structure on a Heaving Low-Aspect-Ratio Wing,” AIAA Paper  2011-219, 2011. LinkGoogle Scholar