Skip to main content
Skip to article control options
No AccessFluid Dynamics

Mixing of Hollow-Cone Spray with a Confined Crossflow in Rectangular Duct

Published Online:https://doi.org/10.2514/1.J051925

This paper presents the experimental results on the mixing of a hollow-cone spray with a confined crossflow. The experiments were carried out inside a rectangular duct (95×95mm in the cross section) at the ambient temperature and pressure with different spray and crossflow conditions, different injection angles, and different nozzle numbers (single and double). The criteria number, J, which can well evaluate the spray-crossflow mixing effect was defined. A better mixing can be achieved with proper J. The upper and bottom counter-rotating vortex pair structures were observed to dominate the mixing and strongly influence the mixing behaviors. For the double nozzle, more counter-rotating vortex pair structures are caused, and their sizes and strength become smaller than that of the single nozzle, which is beneficial for mixing. The spray direction along the crossflow also contributed to the mixing enhancement. The mixing optimization is realized with proper J and spray injection angles.

References

  • [1] Zhao W. B., Shi X. F., Yi Y. and Han X. B., “Application of Hydroreactive Metal Fuel in Super-Cavitation Tropedo Propulsion System,” Chinese Journal of Explosives and Propellants, Vol. 29, No. 5, 2006, pp. 53–56 (Chinese).doi:https://doi.org/1007-7812.0.2006-05-014 HUXUFP 1007-7812 Google Scholar

  • [2] Li S. L., Zhang W., Zhu H., Wang C. H. and Zhou X., “The Research Development of the Hydroreactive Metal Fuel Used for Water-Ramjet Engine,” Chinese Journal of Explosives and Propellants, Vol. 29, No. 6, 2006, pp. 69–73 (Chinese).doi:https://doi.org/1007-7812.0.2006-06-018 HUXUFP 1007-7812 Google Scholar

  • [3] Wu P. K., Kirkendall K. A., Fuller R. P. and Nejad A. S., “Breakup Processes of Liquid Jets in Subsonic Crossflows,” Journal of Propulsion and Power, Vol. 13, No. 1, 1997, pp. 64–73.doi:https://doi.org/10.2514/2.5151 JPPOEL 0748-4658 LinkGoogle Scholar

  • [4] Inamura T. and Nagai N., “Spray Characteristics of Liquid Jet Traversing Subsonic Airstreams,” Journal of Propulsion and Power, Vol. 13, No. 2, 1997, pp. 250–256.doi:https://doi.org/10.2514/2.5156 JPPOEL 0748-4658 LinkGoogle Scholar

  • [5] Tambe S. B., “Liquid Jets in Subsonic Crossflow,” Master’s Thesis, Univ. of Cincinnati, Cincinnati, OH, 2004. Google Scholar

  • [6] Ng C. L., Sankarakrishnan R. and Sallam K., “Bag Breakup of Nonturbulent Liquid Jets in Crossflow,” International Journal of Multiphase Flow, Vol. 34, No. 3, 2008, pp. 241–259. doi:https://doi.org/10.1016/j.ijmultiphaseflow.2007.07.005 IJMFBP 0301-9322 CrossrefGoogle Scholar

  • [7] Costa M., Melo M. J., Sousa J. M. M. and Levy Y., “Spray Characteristics of Angled Liquid Injection Into Subsonic Crossflows,” AIAA Journal, Vol. 44, No. 3, 2006, pp. 646–653. doi:https://doi.org/10.2514/1.10887 AIAJAH 0001-1452 LinkGoogle Scholar

  • [8] Bunce K., Lee J. G. and Santavicca D. A., “Characterization of Liquid Jets-in-Crossflow Under High Temperature, High Velocity Non-Oscillating and Oscillating Flow Conditions,” 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper  2006-1225, 2006. LinkGoogle Scholar

  • [9] Lorenzetto G. E. and Lefebvre A. H., “Measurements of Drop Size on a Plain-Jet Airblast Atomizer,” AIAA Journal, Vol. 15, No. 7, 1977, pp. 1006–1010.doi:https://doi.org/10.2514/3.60742 AIAJAH 0001-1452 LinkGoogle Scholar

  • [10] Eroglu H. and Chigier N., “Initial Drop Size and Velocity Distributions for Airblast Coaxial Atomizers,” Journal of Fluids Engineering, Vol. 113, No. 3, 1991, pp. 453–459. doi:https://doi.org/10.1115/1.2909517 JFEGA4 0098-2202 CrossrefGoogle Scholar

  • [11] Harari R. and Sher E., “Optimization of a Plain-Jet Airblast Atomizer,” Atomization and Sprays, Vol. 7, No. 1, 1997, pp. 97–113. ATSPE2 1044-5110 CrossrefGoogle Scholar

  • [12] Harari R. and Sher E., “Bimodal Drop Size Distribution Behavior in Plain-Jet Airblast Atomizer Sprays,” Atomization and Sprays, Vol. 8, No. 3, 1998, pp. 349–362. ATSPE2 1044-5110 CrossrefGoogle Scholar

  • [13] Leong M. Y., McDonell V. G. and Samuelsen G. S., “Mixing of an Airblast-Atomized Fuel Spray Injected Into a Crossflow of Air,” NASA Rept. CR-2000-210467, 2000. Google Scholar

  • [14] Ghosh S. and Hunt J. C. R., “Induced Air Velocity Within Droplet Driven Sprays,” Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, Vol. 444, No. 1920, 1994, pp. 105–127.doi:https://doi.org/10.1098/rspa.1994.0007 PRLAAZ 1364-5021 CrossrefGoogle Scholar

  • [15] Miller P. C. H., Butler Ellis M. C. and Tuck C. R., “Entrained Air and Droplet Velocities Produced by Agricultural Flat-Fan Nozzles,” Atomization and Sprays, Vol. 6, No. 6, 1996, pp. 693–707. CrossrefGoogle Scholar

  • [16] Phillips J. C., Miller P. C. H. and Thomas N. H., “Air Flow and Droplet Motions Produced by the Interaction of Flat-Fan Spray and Cross Flows,” Atomization and Sprays, Vol. 10, No. 1, 2000, pp. 83–103. CrossrefGoogle Scholar

  • [17] Schmidt D. P., Nouar I., Senecal P. K., Rutland C. J., Martin J. K., Reitz R. D. and Hoffman J. A., “Pressure-Swirl Atomization in the Near Field,” SAE Technical Paper  1999-01-0496, 1999. CrossrefGoogle Scholar

  • [18] Belhadef A., Vallet A., Amielh M. and Anselmet F., “Pressure-Swirl Atomization: Modeling and Experimental Approaches,” International Journal of Multiphase Flow, Vol. 39, March 2012, pp. 13–20. doi:https://doi.org/10.1016/j.ijmultiphaseflow.2011.09.009 IJMFBP 0301-9322 CrossrefGoogle Scholar

  • [19] Chryssakis C. A., Assanis D. N., Lee J. K. and Nishida K., “Fuel Spray Simulation of High-Pressure Swirl-Injector for DISI Engines and Comparison with Laser Diagnostic Measurements,” SAE Technical Paper  2003-01-0007, 2003. CrossrefGoogle Scholar

  • [20] Xue J. Q., “Computational Simulation of Flow Inside Pressure-Swirl Atomizers,” Ph.D Thesis, Univ. of Cincinnati, Cincinnati, OH, 2005. Google Scholar

  • [21] Marchione T., Allouis C., Amoresano A. and Beretta F., “Experimental Investigation of a Pressure Swirl Atomizer Spray,” Journal of Propulsion and Power, Vol. 23, No. 5, 2007, pp. 1096–1101. doi:https://doi.org/10.2514/1.28513 JPPOEL 0748-4658 LinkGoogle Scholar

  • [22] Ghosh S. and Hunt J. C. R., “Spray Jets in a Cross-Flow,” Journal of Fluid Mechanics, Vol. 365, June 1998, pp. 109–136. doi:https://doi.org/10.1017/S0022112098001190 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [23] Kachhwaha S. S., Dhar P. L. and Kale S. R., “Experimental Studies and Numerical Simulation of Evaporative Cooling of Air With a Water Spray—I. Horizontal Parallel Flow,” International Journal of Heat and Mass Transfer, Vol. 41, No. 2, 1998, pp. 447–464.doi:https://doi.org/10.1016/S0017-9310(97)00133-6 IJHMAK 0017-9310 CrossrefGoogle Scholar

  • [24] Kachhwaha S. S., Dhar P. L. and Kale S. R., “Experimental Studies and Numerical Simulation of Evaporative Cooling of Air With a Water Spray—II. Horizontal Counter Flow,” International Journal of Heat and Mass Transfer, Vol. 41, No. 2, 1998, pp. 465–474.doi:https://doi.org/10.1016/S0017-9310(97)00131-2 IJHMAK 0017-9310 CrossrefGoogle Scholar

  • [25] Bai B. F., Zhang H. B., Liu L. and Sun H. J., “Experimental Study on Turbulent Mixing of Spray Droplets in Crossflow,” Experimental Thermal and Fluid Science, Vol. 33, No. 6, 2009, pp. 1012–1020. doi:https://doi.org/10.1016/j.expthermflusci.2009.05.002 ETFSEO 0894-1777 CrossrefGoogle Scholar

  • [26] Bai B. F., Sun H. J., Zhang H. B. and Liu L., “Numerical Study on Turbulent Mixing of Spray Droplets in Crossflow,” Journal of Propulsion and Power, Vol. 7, No. 1, 2011, pp. 132–143.doi:https://doi.org/10.2514/1.49826 JPPOEL 0748-4658 LinkGoogle Scholar

  • [27] H. Ikeuchi & Co., Ltd., Catalog on Hydraulic Spray Nozzles, The Mist Engineers, 2007, pp. 46–48. Google Scholar

  • [28] Bai C. and Gosman A. D., “Development of Methodology for Spray Impingement Simulation,” Vol. 104, No. 3, SAE Technical Paper  950283, 1995. CrossrefGoogle Scholar