Skip to main content
Skip to article control options
No AccessFull-Length Paper

Comparative Study of Effects of Sweep and Humps on High-Speed Propeller Blades

Published Online:https://doi.org/10.2514/1.J052833

Previous work on multidisciplinary optimization of high-speed propeller blades led to the emergence of humpy blades with or without sweep. The present paper is intended to deliver more insight into the potential benefits of such blades by means of a comparative study of four blade designs. These designs differ only in their respective chord distribution and tip sweep. Comparisons are given in terms of aerodynamic and aeroacoustic performance for the four designs operating either in identical flow conditions, hence different load, or in identical thrust conditions, hence slightly different flow conditions due to adaptation of the blade angle. The results highlight the potential of humpy designs to reduce noise in cruise conditions with a small loss of efficiency.

References

  • [1] Marinus B., Roger M. and Van den Braembussche R., “Aeroacoustic and Aerodynamic Optimization of Aircraft Propeller Blades,” AIAA Paper  2010-3850, June 2010. LinkGoogle Scholar

  • [2] Marinus B., Roger M., Van den Braembussche R. and Bosschaerts W., “Multidisciplinary Optimization of Propeller Blades: Focus on the Aeroacoustic Results,” AIAA Paper  2011-2801, June 2011. Google Scholar

  • [3] Marinus B., “Multidisciplinary Optimization of Aircraft Propeller Blades,” Ph.D. Thesis, Royal Military Academy, Brussels, Belgium, Nov. 2011. Google Scholar

  • [4] Hanson D., “Influence of Propeller Design Parameters on Far-Field Harmonic Noise in Forward Flight,” AIAA Journal, Vol. 18, No. 11, 1980, pp. 1313–1319. doi:https://doi.org/10.2514/3.50887 AIAJAH 0001-1452 LinkGoogle Scholar

  • [5] Brooks B., “Acoustic Measurement of Three Prop-Fan Models,” AIAA Paper  1980-0995, June 1980. LinkGoogle Scholar

  • [6] Metzger F. and Rohrbach C., “Benefits of Blade Sweep for Advanced Turboprops,” Journal of Propulsion, Vol. 2, No. 6, 1986, pp. 534–540. doi:https://doi.org/10.2514/3.22938 JPPOEL 0748-4658 LinkGoogle Scholar

  • [7] Amiet R. K., “Thickness Noise of a Propeller and Its Relation to Blade Sweep,” Journal of Fluid Mechanics, Vol. 192, July 1988, pp. 535–560. doi:https://doi.org/10.1017/S0022112088001971 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [8] Parry A. and Crighton D., “Asymptotic Theory of Propeller Noise—Part 1: Subsonic Single-Rotation Propeller,” AIAA Journal, Vol. 27, No. 9, 1989, pp. 1184–1190. doi:https://doi.org/10.2514/3.10244 AIAJAH 0001-1452 LinkGoogle Scholar

  • [9] Crighton D. and Parry A., “Asymptotic Theory of Propeller Noise—Part 2: Supersonic Single-Rotation Propeller,” AIAA Journal, Vol. 29, No. 12, 1991, pp. 2031–2037. doi:https://doi.org/10.2514/3.10838 AIAJAH 0001-1452 LinkGoogle Scholar

  • [10] Abbott I., von Doenhoff A. and Stivers L., “Summary of Airfoil Data,” NACA Rept.  R-824, 1945. Google Scholar

  • [11] Black D., Menthe R. and Wainauski H., “Aerodynamic Design and Performance Testing of an Advanced 30 deg Swept, Eight Bladed Propeller at Mach Numbers from 0.2 to 0.85,” NASA CR-3047, 1978. Google Scholar

  • [12] Fluent 14.0.0, Ansys, Inc., Cecil Township, PA. Google Scholar

  • [13] Shih T.-H., Liou W. W., Shabbir A., Yang Z. and Zhu. J., “A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows: Model Development and Validation,” Computers & Fluids, Vol. 24, No. 3, 1995, pp. 227–238. CrossrefGoogle Scholar

  • [14] Sarkar S. and Balakrishnan L., “Application of a Reynolds-Stress Turbulence Model to the Compressible Shear Layer,” NASA CR-182002, 1990. LinkGoogle Scholar

  • [15] Kim S.-E. and Choudhury D., “A Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient,” Separated and Complex Flows, Vol. 217, 1995, pp. 273–280. Google Scholar

  • [16] Marinus B., “Multidisciplinary Evaluation of Known Propeller Configurations,” von Karman Inst. for Fluid Dynamics, Rept.  2007-15, Rhode-Saint-Genèse, Belgium, June 2007 (unpublished). Google Scholar

  • [17] Lighthill M., “On Sound Generated Aerodynamically,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 211, 1952, pp. 564–587. Google Scholar

  • [18] Ffowcs Williams J. and Hawkings D., “Sound Generated by Turbulence and Surfaces in Arbitrary Motion,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 264, No. 1151, 1969, pp. 321–342. doi:https://doi.org/10.1098/rsta.1969.0031 CrossrefGoogle Scholar

  • [19] Farassat F. and Myers M., “Multidimensional Generalized Functions in Aeroacoustics and Fluid Mechanics—Part 1: Basic Concepts And Operations,” International Journal of Aeroacoustics, Vol. 10, Nos. 2–3, 2011, pp. 161–200. doi:https://doi.org/10.1260/1475-472X.10.2-3.161 1475-472X CrossrefGoogle Scholar

  • [20] Farassat F. and Succi G., “The Prediction of Helicopter Rotor Discrete Frequency Noise,” Vertica, Vol. 7, No. 4, 1983, pp. 309–320. VERTDW 0360-5450 Google Scholar

  • [21] Farassat F., “Derivation of Formulations 1 and 1A of Farassat,” NASA TM-2007-214853, March 2007. Google Scholar

  • [22] Frota J., Lempereur P. and Roger M., “Computation of the Noise of a Subsonic Propeller at an Angle of Attack,” AIAA Paper  1998-2282, June 1998. LinkGoogle Scholar

  • [23] Hanson D. and Fink M., “The Importance of Quadrupole Sources in Prediction of Transonic Tip Speed Propeller Noise,” Journal of Sound and Vibration, Vol. 62, No. 1, 1979, pp. 19–38. doi:https://doi.org/10.1016/0022-460X(79)90554-6 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [24] Dunn M. and Farassat F., “State-of-the-Art of High-Speed Propeller Noise Prediction—A Multidisciplinary Approach and Comparison with Measured Data,” AIAA Paper  1990-3934, Oct. 1990. LinkGoogle Scholar

  • [25] Celik I., Ghia U., Roache P., Freitas C., Coleman H. and Raad P., “Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications,” Journal of Fluids Engineering, Vol. 130, No. 7, July 2008, pp. 1–4. JFEGA4 0098-2202 Google Scholar

  • [26] FINE/Turbo, Ver. 8.9.3, Numeca, Brussels, Belgium, June 2010. Google Scholar

  • [27] Spalart P. and Allmaras S., “A One-Equation Turbulence Model for Aerodynamic Flows,” AIAA Paper  1992-0439, Jan. 1992. LinkGoogle Scholar

  • [28] Ashford G. and Powell K., “An Unstructured Grid Generation and Adaptative Solution Technique for High-Reynolds Number Compressible Flow,” Proceedings of the 27th Lecture Series on Computational Fluid Dynamics, von Karman Inst. for Fluid Dynamics, Paper  LS-1996-06, Sint-Genesius-Rode, Belgium, March 1996. Google Scholar

  • [29] Dittmar J., Joracki R. and Blaha B., “Tone Noise of Three Supersonic Helical Tip Speed Propellers in a Wind Tunnel,” NASA TM-79167, June 1979. Google Scholar

  • [30] Tchotchoua G. and Patrick H., “An Aeroacoustic Scaling Law for Subsonic Propellers,” AIAA Paper  1999-1882, May 1999. LinkGoogle Scholar

  • [31] Kurze U. and Beranek L. L., “Sound Propagation Outdoors,” Noise and Vibration Control, edited by Beranek L. L., McGraw-Hill, New York, 1971, pp. 164–193. Google Scholar

  • [32] Marinus B., Roger M., Van den Braembussche R. and Bosschaerts W., “Truncated Method for Propeller Noise Prediction up to Low Supersonic Helical Tip Mach Numbers,” AIAA Paper  2009-3330, May 2009. LinkGoogle Scholar

  • [33] Carley M., “Propeller Noise Fields,” Journal of Sound and Vibration, Vol. 233, No. 2, 2000, pp. 255–277. doi:https://doi.org/10.1006/jsvi.1999.2797 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [34] Miller C. and Sullivan J., “Noise Constraints Affecting Optimal Propeller Designs,” Society of Automotive Engineers, Rept.  SAE-850871, Warrendale, PA, 1985. CrossrefGoogle Scholar