Skip to main content
Skip to article control options
No AccessFull-Length Paper

Noise Control of Supersonic Jet with Steady and Flapping Fluidic Injection

Published Online:https://doi.org/10.2514/1.J053846

Large-eddy simulation is used to investigate steady-state mass flow injection into a supersonic jet stream with and without flapping motion of the microjets. The results are validated with particle image velocimetry and acoustic measurements. The effect of microjet penetration on the far-field acoustics is studied by altering the number of injectors, the cross-sectional area of each injector, and the injection mass flow. The injectors are evenly distributed around the nozzle exit. The injection angle is 90 deg relative to the main jet flow. This research is a continuation of a previous large-eddy simulation study of pulsed injection that showed that the unsteady injection-induced pressure pulses in the jet caused increased tonal noise for far-field observers at low angles. Flapping jet injection was shown to minimize the creation of the pressure pulses, except for high-amplitude flapping angles and high injection mass flows, where the injections divert out of the shear layer and introduce periodic superposition of the double shock-cell structure. Furthermore, the flapping injection did not show improved noise reduction compared with the steady injection, which is essentially promising because steady injection proves to be a more practical solution for implementation in real jet engine applications.

References

  • [1] Henderson B., “Fifty Years of Fluidic Injection for Jet Noise Reduction,” International Journal of Aeroacoustics, Vol. 9, Nos. 1–2, 2010, pp. 91–122. doi:https://doi.org/10.1260/1475-472X.9.1-2.91 1475-472X CrossrefGoogle Scholar

  • [2] Laurendeau E., Jordan P., Bonnet J., Delville J., Parnaudeau P. and Lamballais E., “Subsonic Jet Noise Reduction by Fluidic Control: The Interaction Region and the Global Effect,” Physics of Fluids, Vol. 20, No. 10, 2008, Paper 101519. doi:https://doi.org/10.1063/1.3006424 CrossrefGoogle Scholar

  • [3] Zaman K. B. M. Q., Reeder M. F. and Samimy M., “Control of an Axisymmetric Jet Using Vortex Generators,” Physics of Fluids, Vol. 6, No. 2, 1994, p. 778. doi:https://doi.org/10.1063/1.868316 CrossrefGoogle Scholar

  • [4] Ahuja K., Salikuddin M. and Plumblee H., “Characteristics of Internal- and Jet-Noise Radiation from a Multi-Lobe, Multi-Tube Suppressor Nozzle Tested Statically and Under Flight Simulation,” Sixth Aeroacoustics Conference, AIAA Paper  1980-1027, 1980. LinkGoogle Scholar

  • [5] Xia H., Tucker P. G. and Eastwood S., “Large-Eddy Simulations of Chevron Jet Flows with Noise Predictions,” International Journal of Heat and Fluid Flow, Vol. 30, No. 6, 2009, pp. 1067–1079. doi:https://doi.org/10.1016/j.ijheatfluidflow.2009.05.002 IJHFD2 0142-727X CrossrefGoogle Scholar

  • [6] You Y., Lüdeke H. and Hannemann K., “On the Flow Physics of a Low Momentum Flux Ratio Jet in a Supersonic Turbulent Crossflow,” Europhysics Letters, Vol. 97, No. 2, 2012, p. 24001. doi:https://doi.org/10.1209/0295-5075/97/24001 EULEEJ 0295-5075 CrossrefGoogle Scholar

  • [7] Rana Z. A., Thornber B. and Drikakis D., “Transverse Jet Injection into a Supersonic Turbulent Cross-Flow,” Physics of Fluids, Vol. 23, No. 4, 2011, Paper 046103. doi:https://doi.org/10.1063/1.3570692 CrossrefGoogle Scholar

  • [8] Murugappan S., Gutmark E. and Carter C., “Control of Penetration and Mixing of an Excited Supersonic Jet into a Supersonic Cross Stream,” Physics of Fluids, Vol. 17, No. 10, 2005, Paper 106101. doi:https://doi.org/10.10.1063/1.2099027 CrossrefGoogle Scholar

  • [9] Chauvet N., Deck S. and Jacquin L., “Shock Patterns in a Slightly Underexpanded Sonic Jet Controlled by Radial Injections,” Physics of Fluids, Vol. 19, No. 4, 2007, Paper 048104. doi:https://doi.org/10.1063/1.2720836 CrossrefGoogle Scholar

  • [10] Chauvet N., Deck S. and Jacquin L., “Numerical Study of Mixing Enhancement in a Supersonic Round Jet,” AIAA Journal, Vol. 45, No. 7, July 2007, pp. 1675–1687. doi:https://doi.org/10.2514/1.27497 AIAJAH 0001-1452 LinkGoogle Scholar

  • [11] Kamran M. A. and McGuirk J. J., “Subsonic Jet Mixing via Active Control Using Steady and Pulsed Control Jets,” AIAA Journal, Vol. 49, No. 4, April 2011, pp. 712–724. doi:https://doi.org/10.2514/1.J050608 AIAJAH 0001-1452 LinkGoogle Scholar

  • [12] Ibrahim M. K., Kunimura R. and Nakamura Y., “Mixing Enhancement of Compressible Jets by Using Unsteady Microjets as Actuators,” AIAA Journal, Vol. 40, No. 4, 2002, pp. 681–688. doi:https://doi.org/10.2514/2.1700 AIAJAH 0001-1452 LinkGoogle Scholar

  • [13] Cuppoletti D. R., Malla B., Gutmark E. J., Hafsteinsson H. E., Eriksson L.-E. and Prisell E., “The Response of Supersonic Jet Noise Components to Fluidic Injection Parameters,” 19th AIAA/CEAS Aeroacoustics Conference, AIAA Paper  2013-2196, May 2013. LinkGoogle Scholar

  • [14] Ragaller P., Annaswamy A., Greska B. and Krothapalli A., “Supersonic Jet Noise Reduction via Pulsed Microjet Injection,” 15th AIAA/CEAS Aeroacoustics Conference, AIAA Paper  2009-3224, 2009. LinkGoogle Scholar

  • [15] Krothapalli A., Venkatakrishnan L., Lourenco L., Greska B. and Elavarasan R., “Turbulence and Noise Suppression of a High-Speed Jet by Water Injection,” Journal of Fluid Mechanics, Vol. 491, No. 9, 2003, pp. 131–159. doi:https://doi.org/10.1017/S0022112003005226 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [16] Krothapalli A., Arakeri A., Greska B. and Joseph T., “High Speed Jet Noise Reduction Using Microjets,” Eighth AIAA/CEAS Aeroacoustics Conference & Exhibit, AIAA, Reston, VA, June 2002. Google Scholar

  • [17] Huet M., Fayard B., Rahier G. and Vuillot F., “Numerical Investigation of the Micro-Jets Efficiency for Jet Noise Reduction,” 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference), AIAA Paper  2009-3127, May 2009. LinkGoogle Scholar

  • [18] Cuppoletti D., Gutmark E., Hafsteinsson H., Eriksson L.-E. and Prisell E., “A Comprehensive Investigation of Pulsed Fluidic Injection for Active Control of Supersonic Jet Noise,” 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper  2013-0009, Jan. 2013. LinkGoogle Scholar

  • [19] Maury R., Jordan P., Cavalieri A., Delville J. and Bonnet J.-P., “A Study of the Response of a Round Jet to Pulsed Fluidic Actuation,” 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference), AIAA Paper  2011-2750, June 2011. LinkGoogle Scholar

  • [20] Kastner J., Hileman J. and Samimy M., “Exploring High-Speed Axisymmetric Jet Noise Control Using Hartmann Tube Fluidic Actuators,” 42nd AIAA Aerospace Science Meeting, AIAA Paper  2004-0186, 2004. LinkGoogle Scholar

  • [21] Zaman K. B. M. Q., “Review of Acoustic Control of Turbulent Jets,” AIAA Journal, Vol. 42, No. 10, Oct. 2004, p. 2174. doi:https://doi.org/10.2514/1.14210 AIAJAH 0001-1452 LinkGoogle Scholar

  • [22] Low K. R., Berger Z. P., Kostka S., ElHadidi B., Gogineni S. and Glauser M. N., “A Low-Dimensional Approach to Closed-Loop Control of a Mach 0.6 Jet,” Experiments in Fluids, Vol. 54, No. 4, 2013, p. 1484. doi:https://doi.org/10.1007/s00348-013-1484-8 EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [23] Porter C., Abbas A., Cohen K., McLaughlin T. and Enloe C. L., “Spatially Distributed Forcing and Jet Vectoring with a Plasma Actuator,” AIAA Journal, Vol. 47, No. 6, June 2009, pp. 1368–1378. doi:https://doi.org/10.2514/1.36716 AIAJAH 0001-1452 LinkGoogle Scholar

  • [24] Kopiev V., Bityurin V., Belyaev I., Godin S., Zaitsev M., Klimov A., Kopiev V., Moralev I. and Ostrikov N., “Jet Noise Control Using the Dielectric Barrier Discharge Plasma Actuators,” Acoustical Physics, Vol. 58, No. 4, 2012, pp. 434–441. doi:https://doi.org/10.1134/S1063771012040100 AOUSEK 1063-7710 CrossrefGoogle Scholar

  • [25] Samimy M., Kim J. and Kearney-Fischer M., “Active Control of Noise in Supersonic Jets Using Plasma Actuators,” ASME Turbo Expo 2009, American Soc. of Mechanical Engineers Paper  GT2009-59456, Fairfield, NJ, 2009. CrossrefGoogle Scholar

  • [26] Kearney-Fischer M. and Samimy M., “Noise Control of a High Reynolds Number Mach 1.3 Heated Jet Using Plasma Actuators,” 48th AIAA Aerospace Sciences Meeting, AIAA Paper  2010-0013, 2010. LinkGoogle Scholar

  • [27] Samimy M., Kim J., Kearney-Fischer M. and Sinha A., “Acoustic and Flow Fields of an Excited High Reynolds Number Axisymmetric Supersonic Jet,” Journal of Fluid Mechanics, Vol. 656, Aug. 2010, pp. 507–529. doi:https://doi.org/10.1017/S0022112010001357 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [28] Gaitonde D. and Samimy M., “Effect of Plasma-Based Azimuthal Mode Excitation on Supersonic Jet Flow,” Fifth Flow Control Conference, AIAA Paper  2010-4416, 2010. LinkGoogle Scholar

  • [29] Perrino M., Munday D., Gutmark E., Burak M. and Eriksson L. E., “Micro-Jet Flow Control for Noise Reduction of a Supersonic Jet from a Practical C-D Nozzle,” 16th AIAA/CEAS Aeroacoustics Conference, AIAA Paper  2010-3875, 2010. LinkGoogle Scholar

  • [30] Munday D., Heeb N., Perrino M., Gutmark E., Burak M.O., Eriksson L.-E. and Prisell E., “Comparison of Flow Control Methods Applied to Conical C-D Nozzles,” 16th AIAA/CEAS Aeroacoustics Conference, AIAA Paper  2010-3874, 2010. LinkGoogle Scholar

  • [31] Cuppoletti D., Perrino M. and Gutmark E., “Fluidic Injection Effects on Acoustics of a Supersonic Jet at Various Mach Numbers,” 17th AIAA/CEAS Aeroacoustic Conference, AIAA Paper  2011-2900, 2011. LinkGoogle Scholar

  • [32] Hafsteinsson H., Eriksson L., Cuppoletti D., Gutmark E. and Prisell E., “Active Suppression of Supersonic Jet Noise Using Pulsating Micro-Jets,” 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper  2012-0246, 2012. LinkGoogle Scholar

  • [33] Erlebacher G., Hussaini M. Y., Speziale C. G. and Zang T. A., “Toward the Large-Eddy Simulation of Compressible Turbulent Flows,” Journal of Fluid Mechanics, Vol. 238, May 1992, pp. 155–185. doi:https://doi.org/10.1017/S0022112092001678 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [34] Burak M., “Large Eddy Simulation for the Analysis of Supersonic Jet Noise Suppression Devices,” Ph.D. Thesis, Div. of Fluid Dynamics, Chalmers Univ. of Technology, Gothenburg, Sweden, 2010. Google Scholar

  • [35] Hafsteinsson H., “Study of Supersonic Jet Noise Reduction Using LES,” Ph.D. Thesis, Div. of Fluid Dynamics, Chalmers Univ. of Technology, Gothenburg, Sweden, 2014. Google Scholar

  • [36] Eriksson L.-E., “Development and Validation of Highly Modular Flow Solver Versions in G2DFLOW and G3DFLOW,” Volvo Aero Corp., Internal Rept.  9970-1162, Trollhattan, Sweden, 1995. Google Scholar

  • [37] Andersson N., “A Study of Subsonic Turbulent Jets and Their Radiated Sound Using Large-Eddy Simulation,” Ph.D. Thesis, Div. of Fluid Dynamics, Chalmers Univ. of Technology, Gothenburg, Sweden, 2005. Google Scholar

  • [38] Kirchhoff G. R., “Zur Theorie der Lichtstrahlen,” Annalen der Physik und Chemie, Vol. 254, No. 4, 1883, pp. 663–695. doi:https://doi.org/10.1002/(ISSN)1521-3889 ANPYA2 0003-3804 CrossrefGoogle Scholar

  • [39] Callender B., Gutmark E. and Dimicco R., “The Design and Validation of a Coaxial Nozzle Acoustic Test Facility,” 40th AIAA Aerospace Sciences Meeting, AIAA Paper  2002-0369, 2002. LinkGoogle Scholar

  • [40] Cuppoletti D. R., “Supersonic Jet Noise Reduction with Novel Fluidic Injection Techniques,” Ph.D. Thesis, Univ. of Cincinnati, Cincinnati, OH, 2013. Google Scholar