Skip to main content

IMPORTANT NOTICE: The ARC website is being updated on Tuesday, May 28, 2024. ARC will be in a "Read Only" mode. Viewing and downloading content will be available but other functions are restricted. For further inquiries, please contact [email protected].

Skip to article control options
No AccessFull-Length Paper

Implicit Large-Eddy Simulation of a Wingtip Vortex

Published Online:https://doi.org/10.2514/1.J054181

In this article, recent developments in numerical methods for performing a large-eddy simulation of the formation and evolution of a wingtip vortex are presented. The development of these vortices in the near wake, in combination with the large Reynolds numbers present in these cases, makes these types of test cases particularly challenging to investigate numerically. First, an overview is given of the spectral vanishing viscosity/implicit large-eddy simulation solver that is used to perform the simulations, and techniques are highlighted that have been adopted to solve various numerical issues that arise when studying such cases. To demonstrate the method’s viability, results are presented from numerical simulations of flow over a NACA 0012 profile wingtip at Rec=1.2×106 and they are compared against experimental data, which is to date the highest Reynolds number achieved for a large-eddy simulation that has been correlated with experiments for this test case. The model in this paper correlates favorably with experiment, both for the characteristic jetting in the primary vortex and pressure distribution on the wing surface. The proposed method is of general interest for the modeling of transitioning vortex-dominated flows over complex geometries.

References

  • [1] Chow J. S., Zilliac G. and Bradshaw P., “Mean and Turbulence Measurements in the Near Field of a Wingtip Vortex,” AIAA Journal, Vol. 53, No. 11, 1997, pp. 1561–1567. doi:https://doi.org/10.2514/2.1 LinkGoogle Scholar

  • [2] Devenport W. J., Rife M. C., Liapis S. I. and Follin G. J., “The Structure and Development of a Wing-Tip Vortex,” Journal of Fluid Mechanics, Vol. 312, 1996, pp. 67–106. doi:https://doi.org/10.1017/S0022112096001929 CrossrefGoogle Scholar

  • [3] Jacquin L., Fabre D., Geffroy P. and Coustols E., “The Properties of a Transport Aircraft Wake in the Extended Near Field—An Experimental Study,” Proceedings of the 39th Aerospace Sciences Meeting and Exhibit, AIAA, Reston, VA, 2001. LinkGoogle Scholar

  • [4] Heyes A., Jones R. and Smith D., “Wandering of Wingtip Vortices,” 12th International Symposium on Application of Laser Techniques to Fluid Mechanics, Springer, Berlin, 2004. Google Scholar

  • [5] Uzun A., Yousuff Hussaini M. and Streett C. L., “Large-Eddy Simulation of a Wing Tip Vortex on Overset Grids,” AIAA Journal, Vol. 44, No. 6, 2006, pp. 1229–1242. doi:https://doi.org/10.2514/1.17999 LinkGoogle Scholar

  • [6] Uzun A. and Yousuff Hussaini M., “Simulations of Vortex Formation Around a Blunt Wing Tip,” AIAA Journal, Vol. 48, No. 6, 2010, pp. 1221–1234. doi:https://doi.org/10.2514/1.J050147 LinkGoogle Scholar

  • [7] Rossow V. J., “Lift-Generated Vortex Wakes of Subsonic Transport Aircraft,” Progress in Aerospace Sciences, Vol. 53, No. 6, 1999, pp. 507–660. doi:https://doi.org/10.1016/S0376-0421(99)00006-8 CrossrefGoogle Scholar

  • [8] Ghias R., Mittal R., Dong H. and Lund T., “Study of Tip-Vortex Formation Using Large-Eddy Simulation,” Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA, Reston, VA, 2005. LinkGoogle Scholar

  • [9] Dacles-Mariani J., Zilliac G. G., Chow J. S. and Bradshaw P., “Numerical/Experimental Study of a Wingtip Vortex in the Near Field,” AIAA Journal, Vol. 33, No. 9, 1995, pp. 1561–1568. doi:https://doi.org/10.2514/3.12826 LinkGoogle Scholar

  • [10] Spalart P. R., “Airplane Trailing Vortices,” Annual Review of Fluid Mechanics, Vol. 30, No. 1, 1998, pp. 107–138. doi:https://doi.org/10.1146/annurev.fluid.30.1.107 CrossrefGoogle Scholar

  • [11] Churchfield M. J. and Blaisdell G. A., “Reynolds Stress Relaxation Turbulence Modeling Applied to a Wingtip Vortex Flow,” AIAA Journal, Vol. 51, No. 11, 2013, pp. 2643–2655. doi:https://doi.org/10.2514/1.J052265 LinkGoogle Scholar

  • [12] Satti R., Li Y., Shock R. and Noelting S., “Unsteady Flow Analysis of a Multi-Element Airfoil Using Lattice Boltzmann Method,” AIAA Journal, Vol. 50, No. 9, 2012, pp. 1805–1816. doi:https://doi.org/10.2514/1.J050906 LinkGoogle Scholar

  • [13] Sagaut P., Large Eddy Simulation for Incompressible Flows, Springer–Verlag, Berlin, 2001, pp. 161–169. CrossrefGoogle Scholar

  • [14] Bolis A., Cantwell C. D., Kirby R. M. and Sherwin S. J., “From h to p Efficiently: Optimal Implementation Strategies for Explicit Time-Dependent Problems Using the Spectral/Hp Element Method,” International Journal for Numerical Methods in Fluids, Vol. 75, No. 8, 2014, pp. 591–607. CrossrefGoogle Scholar

  • [15] Churchfield M. J. and Blaisdell G. A., Reynolds Stress Relaxation Turbulence Model Applied to a Wingtip Vortex Flow, AIAA Journal, Vol. 51, No. 11, 2013, pp. 2643–2655. doi:https://doi.org/10.2514/6.2011-663 Google Scholar

  • [16] Dacles-Mariani J., Kwak D. and Zilliac G., “Accuracy Assessment of a Wingtip Vortex Flowfield in the Near-Field Region,” Proceedings of the 34th Aerospace Sciences Meeting and Exhibit, AIAA, Reston, VA, 1996. doi:https://doi.org/10.2514/6.1996-208 LinkGoogle Scholar

  • [17] Duraisamy K. and Baeder J. D., “Numerical Simulation of the Effects of Spanwise Blowing on Wing-Tip Vortex Formation and Evolution,” Journal of Aircraft, Vol. 43, No. 4, 2006, pp. 996–1006. doi:https://doi.org/10.2514/1.19746 LinkGoogle Scholar

  • [18] Satti R., Li Y., Shock R. and Duncan B., “Computational Analysis of a Wingtip Vortex in the Near-Field Using LBM-VLES Approach,” Proceedings of the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA, Reston, VA, 2011. doi:https://doi.org/10.2514/6.2011-679 LinkGoogle Scholar

  • [19] Tadmor E., “Convergence of Spectral Methods for Nonlinear Conservation Laws,” SIAM Journal on Numerical Analysis, Vol. 26, No. 1, 1989, pp. 30–44. doi:https://doi.org/10.1137/0726003 CrossrefGoogle Scholar

  • [20] Green S. I. and Acosta A. J., “Unsteady Flow in Trailing Vortices,’Journal of Fluid Mechanics, Vol. 227, No. 1, 1991, pp. 107–134. doi:https://doi.org/10.1017/S0022112091000058 CrossrefGoogle Scholar

  • [21] Giuni M., “Formation and Early Development of Wingtip Vortices,” Ph.D. Thesis, Univ. of Glasgow, Glasgow, Scotland, U.K., 2013. Google Scholar

  • [22] Giuni M. and Green R. B., “Vortex Formation on Squared and Rounded Tip,” Aerospace Science and Technology, Vol. 29, No. 1, 2013, pp. 191–199. doi:https://doi.org/10.1016/j.ast.2013.03.004 CrossrefGoogle Scholar

  • [23] Giuni M. and Benard E., “Analytical/Experimental Comparison of the Axial Velocity in Trailing Vortices,” Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA, Reston, VA, 2011. doi:https://doi.org/10.2514/6.2011-990 LinkGoogle Scholar

  • [24] Fabre D. and Jacquin L., “Stability of a Four-Vortex Aircraft Wake Model,” Physics of Fluids, Vol. 12, No. 11, 2000, pp. 2438–2443. doi:https://doi.org/10.1063/1.1289397 CrossrefGoogle Scholar

  • [25] Fabre D., Jacquin L. and Loof A., “Optimal Perturbations in a Four-Vortex Aircraft Wake in Counter-Rotating Configuration,” Journal of Fluid Mechanics, Vol. 451, No. 1, 2002, pp. 319–328. doi:https://doi.org/10.1017/S0022112001006954 Google Scholar

  • [26] Dieterle L., Ehrenfried K., Stuff R., Schneider G., Coton P., Monnier J. C. and Lozier J. F., “Quantitative Flow Field Measurements in a Catapult Facility Using Particle Image Velocimetry,” 18th International Congress on Instrumentation in Aerospace Simulation Facilities, 1999, ICIASF 99, IEEE Publ., Piscataway, NJ, 1999, pp. 1–110. Google Scholar

  • [27] Zuhal L.R., “Formation and Near-Field Dynamics of a Wingtip Vortex,” Ph.D. Thesis, California Inst. of Technology, Pasadena, CA, 2001. Google Scholar

  • [28] Zuhal L. and Gharib M., “Near Field Dynamics of Wing Tip Vortices,” Proceedings of the 15th AIAA Computational Fluid Dynamics Conference, AIAA, Reston, VA, 2001. doi:https://doi.org/10.2514/6.2001-2710 LinkGoogle Scholar

  • [29] McAlister K. W. and Takahashi R. K., “NACA 0015 Wing Pressure and Trailing Vortex Measurements,” NASA TP 3151, U.S. Army Aviation Systems Command TR 91-A-003, 1991. Google Scholar

  • [30] Churchfield M. J. and Blaisdell G. A., “Numerical Simulations of a Wingtip Vortex in the Near Field,” Journal of Aircraft, Vol. 46, No. 1, 2009, pp. 230–243. doi:https://doi.org/10.2514/1.38086 LinkGoogle Scholar

  • [31] Dacles-Mariani J., Rogers S., Kwak D., Zilliac G. and Chow J., “Computational Study of Wingtip Vortex Flowfield,” Proceedings of the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, AIAA, Reston, VA, 1993. doi:https://doi.org/10.2514/6.1993-3010 LinkGoogle Scholar

  • [32] Craft T. J., Gerasimov A. V., Launder B. E. and Robinson C. M. E., “A Computational Study of the Near-Field Generation and Decay of Wingtip Vortices,” International Journal of Heat and Fluid Flow, Vol. 27, No. 4, 2006, pp. 684–695. doi:https://doi.org/10.1016/j.ijheatfluidflow.2006.02.024 CrossrefGoogle Scholar

  • [33] Duraisamy K. and Iaccarino G., “Curvature Correction and Application of the v2–f Turbulence Model to Tip Vortex Flows,” Annual Research Briefs, Center for Turbulence Research, Stanford Univ., Stanford, CA, 2005, pp. 157–168. Google Scholar

  • [34] Churchfield M. and Blaisdell G., “The Lag RST Turbulence Model Applied to a Vortex Flow,” Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA, Reston, VA, 2008. doi:https://doi.org/10.2514/6.2008-769 LinkGoogle Scholar

  • [35] Churchfield M. J. and Blaisdell G. A., “Numerical Simulations of a Wingtip Vortex in the Near Field,” Journal of Aircraft, Vol. 46, No. 1, 2009, pp. 230–243. doi:https://doi.org/10.2514/1.38086 LinkGoogle Scholar

  • [36] Fleig O., Iida M. and Arakawa C., “Wind Turbine Blade Tip Flow and Noise Prediction by Large-Eddy Simulation,” Journal of Solar Energy Engineering, Vol. 126, No. 4, 2004, pp. 1017–1024. doi:https://doi.org/10.1115/1.1800551 CrossrefGoogle Scholar

  • [37] Jiang L., Cai J. and Liu C., “Large-Eddy Simulation of Wing Tip Vortex in the Near Field,” International Journal of Computational Fluid Dynamics, Vol. 22, No. 5, 2008, pp. 289–330. doi:https://doi.org/10.1080/10618560801938883 CrossrefGoogle Scholar

  • [38] Menter F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA Journal, Vol. 32, No. 8, 1994, pp. 1598–1605. doi:https://doi.org/10.2514/3.12149 LinkGoogle Scholar

  • [39] Cantwell C. D. and et al., “Nektar++: An Open-Source Spectral/Hp Element Framework,” Computer Physics Communications, Vol. 192, July 2015, pp. 205–219. doi:https://doi.org/10.1016/j.cpc.2015.02.008 Google Scholar

  • [40] Karniadakis G. and Sherwin S., Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd ed., Oxford Univ. Press, Oxford, 2005. CrossrefGoogle Scholar

  • [41] Karniadakis G., Israeli M. and Orszag S., “High-Order Splitting Methods for Incompressible Navier-Stokes Equations,” Journal of Computational Physics, Vol. 97, No. 2, 1991, pp. 414–443. doi:https://doi.org/10.1016/0021-9991(91)90007-8 CrossrefGoogle Scholar

  • [42] Mengaldo G., De Grazia D., Moxey D., Vincent P. E. and Sherwin S. J., “Dealiasing Techniques for High-Order Spectral Element Methods on Regular and Irregular Grids,” Journal of Computational Physics, Vol. 299, Oct. 2015, pp. 56–81. doi:https://doi.org/10.1016/j.jcp.2015.06.032 CrossrefGoogle Scholar

  • [43] Kirby R. M. and Sherwin S. J., “Stabilisation of Spectral/Hp Element Methods Through Spectral Vanishing Viscosity: Application to Fluid Mechanics Modelling,” Computer Methods in Applied Mechanics and Engineering, Vol. 195, Nos. 23–24, 2006, pp. 3128–3144. doi:https://doi.org/10.1016/j.cma.2004.09.019 CrossrefGoogle Scholar

  • [44] Karamanos G.-S. and Karniadakis G. E., “A Spectral Vanishing Viscosity Method for Large-Eddy Simulations,” Journal of Computational Physics, Vol. 163, No. 1, Sept. 2000, pp. 22–50. doi:https://doi.org/10.1006/jcph.2000.6552 CrossrefGoogle Scholar

  • [45] Pasquetti R., “Spectral Vanishing Viscosity Method for LES: Sensitivity to the SVV Control Parameters,” Journal of Turbulence, Vol. 6, No. N12, 2005; also Marseille Euromech Colloquium, 2004. doi:https://doi.org/10.1080/14685240500125476 Google Scholar

  • [46] Severac E. and Serre E., “A Spectral Vanishing Viscosity for the Les of Turbulent Flows Within Rotating Cavities,” Journal of Computational Physics, Vol. 226, No. 2, Oct. 2007, pp. 1234–1255. doi:https://doi.org/10.1016/j.jcp.2007.05.023 CrossrefGoogle Scholar

  • [47] Xu C., “Stabilization Methods for Spectral Element Computations of Incompressible Flows,” Journal of Scientific Computing, Vol. 27, Nos. 1–3, 2006, pp. 495–505. doi:https://doi.org/10.1007/s10915-005-9059-3 CrossrefGoogle Scholar

  • [48] Lamballais E., Fortuné V. and Laizet S., “Straightforward High-Order Numerical Dissipation via the Viscous Term for Direct, and Large Eddy Simulation,” Journal of Computational Physics, Vol. 230, No. 9, 2011, pp. 3270–3275. doi:https://doi.org/10.1016/j.jcp.2011.01.040 CrossrefGoogle Scholar

  • [49] Sherwin S.J. and Casarin M., “Low-Energy Basis Preconditioning for Elliptic Substructured Solvers Based on Unstructured Spectral/Hp Element Discretization,” Journal of Computational Physics, Vol. 171, No. 1, 2001, pp. 394–417. doi:https://doi.org/10.1006/jcph.2001.6805 CrossrefGoogle Scholar

  • [50] Kirby R. M. and Em Karniadakis G., “Coarse Resolution Turbulence Simulations with Spectral Vanishing Viscosity—Large-Eddy Simulations (svv-les),” Journal of Fluids Engineering, Vol. 124, No. 4, 2002, pp. 886–891. doi:https://doi.org/10.1115/1.1511321 CrossrefGoogle Scholar

  • [51] Moura R. C., Sherwin S. J. and Peiró J., “Linear Dispersion-Diffusion Analysis and its Application to Under-Resolved Turbulence Simulations Using Discontinuous Galerkin Spectral/Hp Methods,” Journal of Computational Physics, Vol. 298, Oct. 2015, pp. 695–710. doi:https://doi.org/10.1016/j.jcp.2015.06.020 CrossrefGoogle Scholar

  • [52] Pasquetti R., “Spectral Vanishing Viscosity Method for Large-Eddy Simulation of Turbulent Flows,” Journal of Scientific Computing, Vol. 27, Nos. 1–3, 2006, pp. 365–375. doi:https://doi.org/10.1007/s10915-005-9029-9 CrossrefGoogle Scholar

  • [53] Pasquetti R., Séverac E., Serre E., Bontoux P. and Schäfer M., “From Stratified Wakes to Rotor–Stator Flows by an Svv–Les Method,” Theoretical and Computational Fluid Dynamics, Vol. 22, Nos. 3–4, 2008, pp. 261–273. doi:https://doi.org/10.1007/s00162-007-0070-1 CrossrefGoogle Scholar

  • [54] Volino P. and Thalmann N. M., “The Spherigon: A Simple Polygon Patch for Smoothing Quickly Your Polygonal Meshes,” Proceedings of Computer Animation 98, IEEE Publ., Piscataway, NJ, 1998, pp. 72–78. CrossrefGoogle Scholar

  • [55] Moxey D., Hazan M., Peiró J. and Sherwin S. J., “An Isoparametric Approach to High-Order Curvilinear Boundary-Layer Meshing,” Computer Methods in Applied Mechanics and Engineering, Vol. 283, Jan. 2015, pp. 636–650. doi:https://doi.org/10.1016/j.cma.2014.09.019 CrossrefGoogle Scholar

  • [56] Dacles-Mariani J., Hafez M. and Kwak D., “Prediction of Wake-Vortex Flow in the Near- and Intermediate-Fields Behind Wings,” Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, AIAA, Reston, VA, 1997. doi:https://doi.org/10.2514/6.1997-40 LinkGoogle Scholar

  • [57] Dong S., Karniadakis G. E. and Chryssostomidis C., “A Robust and Accurate Outflow Boundary Condition for Incompressible Flow Simulations on Severely-Truncated Unbounded Domains,” Journal of Computational Physics, Vol. 261, March 2014, pp. 83–105. doi:https://doi.org/10.1016/j.jcp.2013.12.042 CrossrefGoogle Scholar

  • [58] Karniadakis G. E., Israeli M. and Orszag S. A., “High-Order Splitting Methods for the Incompressible Navier-Stokes Equations,” Journal of Computational Physics, Vol. 97, No. 2, 1991, pp. 414–443. doi:https://doi.org/10.1016/0021-9991(91)90007-8 CrossrefGoogle Scholar

  • [59] Bradshaw P., “Effects of Streamline Curvature on Turbulent Flow,” AGARD TR AG-169, 1973. Google Scholar

  • [60] Thompson D. H., “A Flow Visualization Study of Tip Vortex Formation,” Aeronautical Research Lab., Aerodynamics Note 421, Melbourne, Australia, 1983. Google Scholar