Skip to main content
Skip to article control options
No AccessFull-Length Paper

Adaptive Optimization-Based Improvement of Tetrahedral Meshes

Published Online:

A tetrahedral mesh improvement method is presented that uses an optimization-based node perturbation technique to minimize a cost function. The cost function for each tetrahedron is based on the element condition number. This condition number incorporates a weight matrix that transforms the element from physical space to a reference space. The condition number is a measure of the conformity of the physical element with respect to the reference element. Feature-based adaptation is incorporated into the element weight matrix to influence the node perturbation scheme to favor nonunit aspect ratio elements. The mesh improvement scheme produces meshes that cluster grid nodes in high-gradient regions of the selected adaptation function. Results for several inviscid, three-dimensional cases are included.


  • [1] Bowyer A., “Computing Dirichlet Tessellations,” Computer Journal, Vol. 24, No. 2, 1981, pp. 162–166. doi: CrossrefGoogle Scholar

  • [2] Watson D. F., “Computing the n-Dimensional Delaunay Tessellation with Application to Voronoi Polytopes,” Computer Journal, Vol. 24, No. 2, 1981, pp. 167–172. doi: CrossrefGoogle Scholar

  • [3] Lawson C. L., “Transforming Triangulations,” Discrete Mathematics, Vol. 3, North-Holland Publ. Company, Amsterdam, 1972, pp. 365–372. CrossrefGoogle Scholar

  • [4] Marcum D. L., “Generation of Unstructured Grids for Viscous Flow Applications,” 33rd Aerospace Sciences Meeting and Exhibit, AIAA Paper  1995-0212, 1995. LinkGoogle Scholar

  • [5] Pirzadeh S., “Recent Progress in Unstructured Grid Generation,” 30th Aerospace Sciences Meeting, AIAA Paper  1992-0445, 1992. LinkGoogle Scholar

  • [6] Shewchuk J. R., “Tetrahedral Mesh Generation by Delaunay Refinement,” SoCG 98 14th ACM Symposium on Computational Geometry, Association for Computing Machinery, Minneapolis, MN, June 1998, pp. 86–95; ACM, New York, 1998. Google Scholar

  • [7] Lohner R., “A Parallel Advancing Front Grid Generation Scheme,” 38th Aerospace Sciences Meeting and Exhibit, AIAA Paper  2000-1005, 2000. LinkGoogle Scholar

  • [8] Degand C. and Farhat C., “A Three-Dimensional Torsional Spring Analogy Method for Unstructured Dynamic Meshes,” Computer and Structures, Vol. 80, No. 3, 2002, pp. 305–316. doi: CrossrefGoogle Scholar

  • [9] Knupp P. M., “Matrix Norms & The Condition Number: A General Framework to Improve Mesh Quality via Node-Movement,” Proceedings of the 8th International Meshing Roundtable, International Meshing Roundtable, South Lake Tahoe, CA, 1999. Google Scholar

  • [10] Freitag L. A. and Knupp P. M., “Tetrahedral Element Shape Optimization via the Jacobian Determinant and Condition Number,” Proceedings of the 8th International Meshing Roundtable, South Lake Tahoe, CA, 1999. Google Scholar

  • [11] Knupp P. M., “Winslow Smoothing on Two-Dimensional Unstructured Meshes,” Proceedings of the 7th International Meshing Roundtable, International Meshing Roundtable, Dearborn, MI, 1988. Google Scholar

  • [12] Sahasrabudhe M., Karman S. and Anderson W. K., “Grid Control of Viscous Unstructured Meshes Using Optimization,” 44th Aerospace Science Meeting and Exhibit, AIAA Paper  2006-0532, Jan. 2006. LinkGoogle Scholar

  • [13] Karman S. L., Anderson W. K. and Sahasrabudhe M., “Mesh Generation Using Unstructured Computational Meshes and Elliptic Partial Differential Equation Smoothing,” AIAA Journal, Vol. 44, No. 6, 2006, pp. 1277–1286. doi: LinkGoogle Scholar

  • [14] Karman S. L., “Virtual Control Volumes for Three-Dimensional Unstructured Elliptic Smoothing,” 49th Aerospace Sciences Meeting and Exhibit, AIAA Paper  2011-0893, Jan. 2011. LinkGoogle Scholar

  • [15] Sahasrabudhe M., “Unstructured Mesh Generation and Manipulation Based on Elliptic Smoothing and Optimization,” Graduate School of Computational Engineering, Ph.D. Dissertation, Univ. of Tennessee at Chattanooga, Chattanooga, TN, 2008. Google Scholar

  • [16] Masters J. S. and Karman S. L., “Manipulating Boundaries and Viscous Regions of Unstructured Meshes Using Winslow’s Equations,” AIAA Journal, Vol. 50, No. 10, 2012, pp. 2080–2090. doi: LinkGoogle Scholar

  • [17] Masters J. S. and Tatum K. E., “Mesh Manipulation for 3D Tetrahedral Meshes,” 53rd AIAA Aerospace Sciences Meeting, AIAA Paper  2015-0913, 2015. Google Scholar

  • [18] Venditti D. A. and Darmofal D. L., “Grid Adaptation for Functional Outputs: Application to Two-Dimensional Inviscid Flows,” Journal of Computational Physics, Vol. 176, No. 1, 2002, pp. 40–69. doi:10.1006/jcph.2001.6967 0021-9991 CrossrefGoogle Scholar

  • [19] Park M. A., “Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation,” 32nd AIAA Fluid Dynamics Conference and Exhibit, AIAA Paper  2002-3286, June 2002. Google Scholar

  • [20] Cavallo P. A., Sinha N. and Feldman G. M., “Parallel Unstructured Mesh Adaptation for Transient Moving Body and Aeropropulsive Applications,” 42nd Aerospace Sciences Meeting and Exhibit, AIAA Paper  2004-1057, Jan. 2004. LinkGoogle Scholar

  • [21] Cavallo P. A. and Grismer M. J., “Further Extension and Validation of a Parallel Unstructured Mesh Adaptation Package,” 43rd Aerospace Sciences Meeting and Exhibit, AIAA Paper  2005-0924, Jan. 2005. LinkGoogle Scholar

  • [22] Jones W. T., Nielsen E. J. and Park M. A., “Validation of 3D Adjoint Based Error Estimation and Mesh Adaptation for Sonic Boom Prediction,” 44th Aerospace Sciences Meeting and Exhibit, AIAA Paper  2006-1150, Jan. 2006. LinkGoogle Scholar

  • [23] Anderson D. A., “Equidistribution Schemes, Poisson Generators, and Adaptive Grids,” Applied Mathematics and Computation, Vol. 24, No. 3, 1987, pp. 211–227. doi: AMHCBQ 0096-3003 CrossrefGoogle Scholar

  • [24] Anderson D., “An Adaptive Grid Scheme Controlling Cell Area/Volume,” 25th AIAA Aerospace Sciences Meeting, AIAA Paper  1987-0202, 1987. LinkGoogle Scholar

  • [25] Pointwise,” Software Package, Ver. 17.3, Pointwise, Fort Worth, TX, 2015. Google Scholar

  • [26] FieldView,” Software Package, Ver. 15, Intelligent Light, Rutherford, NJ, 2015. Google Scholar

  • [27] Lagarias J. C. and Zong C., “Mysteries in Packing Regular Tetrahedra,” American Mathematical Society, Vol. 59, No. 11, 2012, pp. 1540–1549. 0065-9290 Google Scholar

  • [28] Anderson W. K., Newman J. C., Whitfield D. L. and Nielsen E. J., “Sensitivity Analysis for the Navier–Stokes Equations on Unstructured Meshes Using Complex Variables,” AIAA Journal, Vol. 39, No. 1, 2001, pp. 56–63. doi: AIAJAH 0001-1452 LinkGoogle Scholar

  • [29] Aubert P., Cesare N. D. and Pironneau O., “Automatic Differentiation in C++ Using Expression Templates and Application to a Flow Control Problem,” Computing and Visualization in Science, Vol. 3, No. 4, 2001, pp. 197–208. doi: CrossrefGoogle Scholar

  • [30] Phipps E. and Pawlowski R., “Efficient Expression Templates for Operator Overloading-Based Automatic Differentiation,” Cornell Univ. Library, Ithaca, NY, 2012. CrossrefGoogle Scholar

  • [31] Biedron R. T. and Thomas J. L., “Recent Enhancements to the FUN3D Flow Solver for Moving-Mesh Applications,” 47th AIAA Aerospace Sciences Meeting AIAA Paper  2009-1360, Jan. 2009. LinkGoogle Scholar

  • [32] Schmitt V. and Charpin F., “Pressure Distributions on the ONERA-M6-Wing at Transonic Mach Numbers,” Experimental Data Base for Computer Program Assessment, AGARD AR 138 ed., AGARD Fluid Dynamics Panel Working Group 04, Neuilly sur Seine, France, 1979. Google Scholar

  • [33] ONERA M6 Wing,” NPARC Alliance Validation Archive, NASA, 1979, [retrieved 6 April 2013]. Google Scholar

  • [34] Heim E. R., “CFD Wing/Pylon/Finned Store Mutual Interference Wind Tunnel Experiment,” Calspan Corporation/AEDC Operations, Arnold Air Force Base, Rept.  AEDC-TSR-91-P4, Tennessee, 1991. Google Scholar