Skip to main content
Skip to article control options
No AccessTechnical Note

Resulting Aerodynamic Losses of Combinations of Localized Roughness Patches on Turbine Blades

Published Online:https://doi.org/10.2514/1.J054602
Free first page

References

  • [1] Babikian R., Lukachko S. P. and Waitz I. A., “The Historical Fuel Efficiency Characteristics of Regional Aircraft from Technological, Operational, and Cost Perspectives,” Journal of Air Transport Management, Vol. 8, No. 6, 2002, pp. 389–400. doi:https://doi.org/10.1016/S0969-6997(02)00020-0 CrossrefGoogle Scholar

  • [2] Stieger R. D. and Hodson H. P., “The Transition Mechanism of Highly Loaded Low-Pressure Turbine Blades,” Journal of Turbomachinery, Vol. 126, No. 4, 2004, pp. 536–543. doi:https://doi.org/10.1115/1.1773850 CrossrefGoogle Scholar

  • [3] Hodson H. P. and Howell R. J., “Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines,” Annual Review of Fluid Mechanics, Vol. 37, No. 1, Jan. 2005, pp. 71–98. doi:https://doi.org/10.1146/annurev.fluid.37.061903.175511 CrossrefGoogle Scholar

  • [4] Chow Y.-C., Uzol O., Katz J. and Meneveau C., “Decomposition of the Spatially Filtered and Ensemble Averaged Kinetic Energy, the Associated Fluxes and Scaling Trends in a Rotor Wake,” Physics of Fluids, Vol. 17, No. 8, 2005, Paper 085102. doi:https://doi.org/10.1063/1.1990206 CrossrefGoogle Scholar

  • [5] Soranna F., Chow Y.-C., Uzol O. and Katz J., “The Effects of Inlet Guide Vane-Wake Impingement on the Boundary Layer and the Near-Wake of a Rotor Blade,” Journal of Turbomachinery, Vol. 132, No. 4, 2010, Paper 041016. doi:https://doi.org/10.1115/1.3149282 CrossrefGoogle Scholar

  • [6] Gete Z. and Evans R., “An Experimental Investigation of Unsteady Turbulent-Wake/Boundary-Layer Interaction,” Journal of Fluids and Structures, Vol. 17, No. 1, Jan. 2003, pp. 43–55. doi:https://doi.org/10.1016/S0889-9746(02)00098-1 CrossrefGoogle Scholar

  • [7] Hilgenfeld L. and Pfitzner M., “Unsteady Boundary Layer Development Due to Wake Passing Effects on a Highly Loaded Linear Compressor Cascade,” Journal of Turbomachinery, Vol. 126, No. 4, 2004, pp. 493–500. doi:https://doi.org/10.1115/1.1791290 CrossrefGoogle Scholar

  • [8] Bons J. P., Taylor R. P., McClain S. T. and Rivir R. B., “The Many Faces of Turbine Surface Roughness,” Journal of Turbomachinery, Vol. 123, No. 4, 2001, pp. 739–748. doi:https://doi.org/10.1115/1.1400115 CrossrefGoogle Scholar

  • [9] Hamed A. A., “Influence of Secondary Flow on Turbine Erosion,” Journal of Turbomachinery, Vol. 111, No. 3, 1989, pp. 310–314. doi:https://doi.org/10.1115/1.3262270 CrossrefGoogle Scholar

  • [10] Taylor R. P., “Surface Roughness Measurements on Gas Turbine Blades,” Journal of Turbomachinery, Vol. 111, No. 2, 1990, pp. 175–180. doi:https://doi.org/10.1115/1.2927630 CrossrefGoogle Scholar

  • [11] Montomoli F., Hodson H. and Haselbach F., “Effect of Roughness and Unsteadiness on the Performance of a New Low Pressure Turbine Blade at Low Reynolds Numbers,” Journal of Turbomachinery, Vol. 132, No. 3, 2010, Paper 031018. doi:https://doi.org/10.1115/1.3148475 CrossrefGoogle Scholar

  • [12] Mejia-Alvarez R. and Christensen K. T., “The Impact of Low-Order Representations of Irregular Surface Roughness on Flow in the Roughness Sublayer,” Proceedings of the 40th AIAA Fluid Dynamics Conference and Exhibit, AIAA Paper  2010-5018, 2010. LinkGoogle Scholar

  • [13] Mejia-Alvarez R. and Christensen K. T., “Wall-Parallel Stereo Particle-Image Velocimetry Measurements in the Roughness Sublayer of Turbulent Flow Overlying Highly Irregular Roughness,” Physics of Fluids (1994-Present), Vol. 25, No. 11, 2013, Paper 015106. doi:https://doi.org/10.1063/1.4832377 Google Scholar

  • [14] Smits A. and Wood D., “The Response of Turbulent Boundary Layers to Sudden Perturbations,” Annual Review of Fluid Mechanics, Vol. 17, No. 1, 1985, pp. 321–358. doi:https://doi.org/10.1146/annurev.fl.17.010185.001541 CrossrefGoogle Scholar

  • [15] Andreopoulos J. and Wood D. H., “The Response of a Turbulent Boundary Layer to a Short Length of Surface Roughness,” Journal of Fluid Mechanics, Vol. 118, No. 1, 1982, pp. 143–164. doi:https://doi.org/10.1017/S0022112082001001 CrossrefGoogle Scholar

  • [16] Bons J. P. and McClain S. T., “The Effect of Real Turbine Roughness with Pressure Gradient on Heat Transfer,” ASME Journal of Turbomachinery, Vol. 126, No. 3, 2004, pp. 385–394. doi:https://doi.org/10.1115/1.1738120 CrossrefGoogle Scholar

  • [17] Wu Y. and Christensen K. T., “Reynolds-Stress Enhancement Associated with a Short Fetch of Roughness in Wall Turbulence,” AIAA Journal, Vol. 44, No. 12, 2006, pp. 3098–3106. doi:https://doi.org/10.2514/1.22357 LinkGoogle Scholar

  • [18] Krogstad P. A. and Antonia R. A., “Surface Roughness Effects in Turbulent Boundary Layers,” Experiments in Fluids, Vol. 27, No. 5, 1999, pp. 450–460. doi:https://doi.org/10.1007/s003480050370 CrossrefGoogle Scholar

  • [19] Shin J. H. and Jin Song S., “Pressure Gradient Effects on Smooth and Rough Surface Turbulent Boundary Layers—Part I: Favorable Pressure Gradient,” Journal of Fluids Engineering, Vol. 137, No. 1, 2014, Paper 011203. doi:https://doi.org/10.1115/1.4027475 CrossrefGoogle Scholar

  • [20] Shin J. H. and Jin Song S., “Pressure Gradient Effects on Smooth- and Rough-Surface Turbulent Boundary Layers—Part II: Adverse Pressure Gradient,” Journal of Fluids Engineering, Vol. 137, No. 1, 2014, Paper 011204. doi:https://doi.org/10.1115/1.4027475 CrossrefGoogle Scholar

  • [21] Hohenstein S., “Einfluss komplexer Oberflächenstrukturen auf das aerodynamische Verlustverhalten von Turbinenbeschaufelungen,” Ph.D. Thesis, Leibniz Universität Hannover, Hannover, 2015. Google Scholar

  • [22] Mulleners K., Gilge P. and Hohenstein S., “Impact of Surface Roughness on the Turbulent Wake Flow of a Turbine Blade,” Journal of Aerodynamics, Vol. 2014, 2014, pp. 1–9, Article ID 458757. doi:https://doi.org/10.1155/2014/458757 CrossrefGoogle Scholar

  • [23] Lietmeyer C., “Optimal Application of Riblets on Compressor Blades and Their Contamination Behavior,” Journal of Turbomachinery, Vol. 135, No. 1, Oct. 2012, Paper 011036. doi:https://doi.org/10.1115/1.4006518 CrossrefGoogle Scholar

  • [24] Raffel M., Willert C. E., Wereley S. T. and Kompenhans J., Particle Image Velocimetry: A Practical Guide, Experimental Fluid Mechanics Series, Springer, Berlin, 2007. CrossrefGoogle Scholar

  • [25] Zhang Q., Ligrani P. M. and Lee S. W., “Determination of Rough-Surface Skin Friction Coefficients from Wake Profile Measurements,” Experiments in Fluids, Vol. 35, No. 6, Dec. 2003, pp. 627–635. doi:https://doi.org/10.1007/s00348-003-0712-z CrossrefGoogle Scholar

  • [26] Gilge P. and Mulleners K., “On the Resulting Aerodynamic Loss of Combinations of Localized Surface Roughness Patches on a Turbine Blade,” AIAA, Reston, VA, June 2015. Google Scholar

  • [27] Hohenstein S., Aschenbruck J. and Seume J., “Aerodynamic Effects of Non-Uniform Surface Roughness on a Turbine Blade,” Proceedings of American Society of Mechanical Engineers Turbo Expo, ASME Paper  GT2013-95433, 2013. CrossrefGoogle Scholar