Skip to main content
Skip to article control options
No AccessTechnical Note

Effects of Shock-Tube Cleanliness on Hypersonic Boundary Layer Transition at High Enthalpy

Published Online:https://doi.org/10.2514/1.J054897
Free first page

References

  • [1] Bushnell D., “Notes on Initial Disturbance Fields for the Transition Problem,” Instability and Transition, edited by Hussaini M. and Voigt R., ICASE/NASA LaRC Series, Springer, New York, 1990, pp. 217–232. CrossrefGoogle Scholar

  • [2] Schneider S. P., “Effects of High-Speed Tunnel Noise on Laminar-Turbulent Transition,” Journal of Spacecraft and Rockets, Vol. 38, No. 3, 2001, pp. 323–333. doi:https://doi.org/10.2514/2.3705 JSCRAG 0022-4650 LinkGoogle Scholar

  • [3] Schneider S. P., “Hypersonic Laminar-Turbulent Transition on Circular Cones and Scramjet Forebodies,” Progress in Aerospace Sciences, Vol. 40, Nos. 1–2, 2004, pp. 1–50. doi:https://doi.org/10.1016/j.paerosci.2003.11.001 PAESD6 0376-0421 CrossrefGoogle Scholar

  • [4] Schneider S. P., “Development of Hypersonic Quiet Tunnels,” Journal of Spacecraft and Rockets, Vol. 45, No. 4, 2008, pp. 641–664. doi:https://doi.org/10.2514/1.34489 JSCRAG 0022-4650 LinkGoogle Scholar

  • [5] Hofferth J. W., Humble R. A., Floryan D. C. and Saric W. S., “High-Bandwidth Optical Measurements of the Second-Mode Instability in a Mach 6 Quiet Tunnel,” 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper  2013-0378, 2013. LinkGoogle Scholar

  • [6] Kocian T. S., Perez E., Oliviero N. B., Kuehl J. J. and Reed H. L., “Hypersonic Stability Analysis of a Flared Cone,” 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper  2013-0667, 2013. LinkGoogle Scholar

  • [7] Stetson K. F. and Rushton G. H., “Shock Tunnel Investigation of Boundary-Layer Transition at M=5.5,” AIAA Journal, Vol. 5, No. 5, 1967, pp. 899–906. doi:https://doi.org/10.2514/3.4098 AIAJAH 0001-1452 LinkGoogle Scholar

  • [8] Mee D. J., “Boundary-Layer Transition Measurements in Hypervelocity Flows in a Shock Tunnel,” AIAA Journal, Vol. 40, No. 8, 2002, pp. 1542–1548. doi:https://doi.org/10.2514/2.1851 AIAJAH 0001-1452 LinkGoogle Scholar

  • [9] Holden M. S., Wadhams T. P. and Candler G. V., “Experimental Studies in the LENS Shock Tunnel and Expansion Tunnel to Examine Real-Gas Effects in Hypervelocity Flows,” 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper  2004-0916, 2004. LinkGoogle Scholar

  • [10] Wadhams T. P., Mundy E., MacLean M. G. and Holden M. S., “Ground Test Studies of the HIFIRE-1 Transition Experiment, Part 1: Experimental Results,” Journal of Spacecraft and Rockets, Vol. 45, No. 6, 2008, pp. 1134–1148. doi:https://doi.org/10.2514/1.38338 JSCRAG 0022-4650 LinkGoogle Scholar

  • [11] MacLean M., Wadhams T., Holden M. and Johnson H., “Ground Test Studies of the HIFiRE-1 Transition Experiment, Part 2: Computational Analysis,” Journal of Spacecraft and Rockets, Vol. 45, No. 6, 2008, pp. 1149–1164. doi:https://doi.org/10.2514/1.37693 JSCRAG 0022-4650 LinkGoogle Scholar

  • [12] Tanno H., Komura T., Sato K., Itoh K., Takahashi M. and Fujii K., “Measurements of Hypersonic Boundary Layer Transition on Cone Models in the Free-Piston Shock Tunnel HIEST,” 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper  2009-0781, 2009. LinkGoogle Scholar

  • [13] Fujii K., Noriaki H., Tadao K., Shoichi T., Muneyoshi N., Yukihiro I., Akihiro N. and Hiroshi O., “A Measurement of Instability Wave in the Hypersonic Boundary Layer on a Sharp Cone,” 41st AIAA Fluid Dynamics Conference and Exhibit, AIAA Paper  2011-3871, 2011. LinkGoogle Scholar

  • [14] Laurence S. J., Wagner A., Hannemann K., Wartemann V., Lüdeke H., Tanno H. and Itoh K., “Time-Resolved Visualization of Instability Waves in a Hypersonic Boundary Layer,” AIAA Journal, Vol. 50, No. 1, 2012, pp. 243–246. doi:https://doi.org/10.2514/1.J051112 AIAJAH 0001-1452 LinkGoogle Scholar

  • [15] Laurence S., Wagner A. and Hannemann K., “Schlieren-Based Techniques for Investigating Instability Development and Transition in a Hypersonic Boundary Layer,” Experiments in Fluids, Vol. 55, No. 8, 2014, Paper 1782. doi:https://doi.org/10.1007/s00348-014-1782-9 EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [16] Laurence S. J., Wagner A., Ozawa H., Schramm J. M. and Hannemann K., “Visualization of a Hypersonic Boundary-Layer Transition on a Slender Cone,” 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper  2014-3110, 2014. LinkGoogle Scholar

  • [17] Germain P. D. and Hornung H. G., “Transition on a Slender Cone in Hypervelocity Flow,” Experiments in Fluids, Vol. 22, No. 3, 1997, pp. 183–190. doi:https://doi.org/10.1007/s003480050036 EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [18] Adam P. H. and Hornung H. G., “Enthalpy Effects on Hypervelocity Boundary-Layer Transition: Ground Test and Flight Data,” Journal of Spacecraft and Rockets, Vol. 34, No. 5, 1997, pp. 614–619. doi:https://doi.org/10.2514/2.3278 JSCRAG 0022-4650 LinkGoogle Scholar

  • [19] Rasheed A., Hornung H. G., Fedorov A. V. and Malmuth N. D., “Experiments on Passive Hypervelocity Boundary-Layer Control Using an Ultrasonically Absorptive Surface,” AIAA Journal, Vol. 40, No. 3, March 2002, pp. 481–489. doi:https://doi.org/10.2514/2.1671 AIAJAH 0001-1452 LinkGoogle Scholar

  • [20] Jewell J. S., Wagnild R. M., Leyva I. A., Candler G. V. and Shepherd J. E., “Transition Within a Hypervelocity Boundary Layer on a 5-Degree Half-Angle Cone in Air/CO2 Mixtures,” 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper  2013-0523, 2013. LinkGoogle Scholar

  • [21] Parziale N. J., Shepherd J. E. and Hornung H. G., “Differential Interferometric Measurement of Instability in a Hypervelocity Boundary Layer,” AIAA Journal, Vol. 51, No. 3, 2013, pp. 750–754. doi:https://doi.org/10.2514/1.J052013 AIAJAH 0001-1452 LinkGoogle Scholar

  • [22] Fedorov A. V., “Receptivity of a Supersonic Boundary Layer to Solid Particulates,” Journal of Fluid Mechanics, Vol. 737, Dec. 2013, pp. 105–131. doi:https://doi.org/10.1017/jfm.2013.564 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [23] Jewell J. S., Parziale N. J., Leyva I. A., Shepherd J. E. and Hornung H. G., “Turbulent Spot Observations Within a Hypervelocity Boundary Layer on a 5-Degree Half-Angle Cone,” 42nd AIAA Fluid Dynamics Conference and Exhibit, AIAA Paper  2012-3062, 2012. LinkGoogle Scholar

  • [24] Parziale N. J., “Slender-Body Hypervelocity Boundary-Layer Instability,” Ph.D. Thesis, California Inst. of Technology, Pasadena, CA, 2013. Google Scholar

  • [25] Parziale N. J., Shepherd J. E. and Hornung H. G., “Free-Stream Density Perturbations in a Reflected-Shock Tunnel,” Experiments in Fluids, Vol. 55, No. 2, 2014, pp. 1–10. doi:https://doi.org/10.1007/s00348-014-1665-0 EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [26] Jewell J. S., “Boundary-Layer Transition on a Slender Cone in Hypervelocity Flow with Real Gas Effects,” Ph.D. Thesis, California Inst. of Technology, Pasadena, CA, 2014. Google Scholar

  • [27] Parziale N. J., Shepherd J. E. and Hornung H. G., “Observations of Hypervelocity Boundary-Layer Instability,” Journal of Fluid Mechanics, Vol. 781, Oct. 2015, pp. 87–112. doi:https://doi.org/10.1017/jfm.2015.489 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [28] Gronvall J. E., Johnson H. B. and Candler G. V., “Boundary-Layer Stability Analysis of High Enthalpy Shock Tunnel Transition Experiments,” Journal of Spacecraft and Rockets, Vol. 51, No. 2, 2014, pp. 455–467. doi:https://doi.org/10.2514/1.A32577 JSCRAG 0022-4650 LinkGoogle Scholar

  • [29] Hornung H. G., “Performance Data of the New Free-Piston Shock Tunnel at GALCIT,” 17th AIAA Aerospace Ground Testing Conference, AIAA Paper  1992-3943, 1992. LinkGoogle Scholar

  • [30] Goodwin D. G., “An Open-Source, Extensible Software Suite for CVD Process Simulation,” Proceedings of CVD XVI and EuroCVD Fourteen, edited by Allendorf M., Maury F. and Teyssandier F., The Electrochemical Soc., Inc., Pennington, NJ, 2003, pp. 155–162. Google Scholar

  • [31] Browne S., Ziegler J. and Shepherd J. E., “Numerical Solution Methods for Shock and Detonation Jump Conditions,” California Inst. of Technology  GALCIT-TR-FM2006.006, Pasadena, CA, 2006. Google Scholar

  • [32] Gordon S. and McBride B., “Thermodynamic Data to 20000 K for Monatomic Gases,” NASA Rept.  TP-1999-208523, 1999. Google Scholar

  • [33] McBride B. J., Zehe M. J. and Gordon S., “NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species,” NASA Rept.  TP-2002-211556, 2002. Google Scholar

  • [34] Johnson H. B., “Thermochemical Interactions in Hypersonic Boundary Layer Stability,” Ph.D. Thesis, Univ. of Minnesota, Minneapolis, MN, 2000. Google Scholar

  • [35] Johnson H. B., Seipp T. G. and Candler G. V., “Numerical Study of Hypersonic Reacting Boundary Layer Transition on Cones,” Physics of Fluids, Vol. 10, No. 10, 1998, pp. 2676–2685. doi:https://doi.org/10.1063/1.869781 CrossrefGoogle Scholar

  • [36] Wagnild R. M., “High Enthalpy Effects on Two Boundary Layer Disturbances in Supersonic and Hypersonic Flow,” Ph.D. Thesis, Univ. of Minnesota, Minneapolis, MN, 2012. Google Scholar

  • [37] Taylor J. R. and Hornung H. G., “Real Gas and Wall Roughness Effects on the Bifurcation of the Shock Reflected from the End Wall of a Tube,” Shock Tubes and Shock Waves: Proceedings of the 13th International Symposium on Shock Waves, State Univ. of New York Press, Albany, NY, 1981, pp. 262–270. Google Scholar

  • [38] Davies L. and Wilson J. L., “Influence of Reflected Shock and Boundary-Layer Interaction on Shock-Tube Flows,” Physics of Fluids, Vol. 12, No. 5, 1969, Paper I-37. doi:https://doi.org/10.1063/1.1692625 CrossrefGoogle Scholar

  • [39] Smeets G., “Laser Interferometer for High Sensitivity Measurements on Transient Phase Objects,” IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-8, No. 2, 1972, pp. 186–190. doi:https://doi.org/10.1109/TAES.1972.309488 IEARAX 0018-9251 CrossrefGoogle Scholar

  • [40] Wilkinson S. P., Anders S. G., Chen F.-J. and Beckwith I. E., “Supersonic and Hypersonic Quiet Tunnel Technology at NASA Langley,” 17th Aerospace Ground Testing Conference, AIAA Paper  1992-3908, 1992. LinkGoogle Scholar

  • [41] Sanderson S. R., “Shock Wave Interaction in Hypervelocity Flow,” Ph.D. Thesis, California Inst. of Technology, Pasadena, CA, 1995. CrossrefGoogle Scholar

  • [42] Sanderson S. R. and Sturtevant B., “Transient Heat Flux Measurement Using a Surface Junction Thermocouple,” Review of Scientific Instruments, Vol. 73, No. 7, 2002, pp. 2781–2787. doi:https://doi.org/10.1063/1.1484255 RSINAK 0034-6748 CrossrefGoogle Scholar

  • [43] Jewell J. S. and Shepherd J. E., “T5 Conditions Report: Shots 2526–2823,” California Inst. of Technology, GALCIT TR FM2014.002, Pasadena, CA, June 2014. Google Scholar

  • [44] Draper N. R. and Smith H., Applied Regression Analysis, John Wiley & Sons, London, 1998. CrossrefGoogle Scholar

  • [45] Matlab v. 8.1.0.604 (R2013a), Linear Model Documentation Page,” MathWorks, Natick, MA, 2013. Google Scholar

  • [46] Jewell J. S., Shepherd J. E. and Leyva I. A., “Shock Tunnel Operation and Correlation of Boundary Layer Transition on a Cone in Hypervelocity Flow,” Proceedings of the 29th International Symposium on Shock Waves, Springer International, Cham, Switzerland, July 2013, pp. 723–728. Google Scholar