Skip to main content
Skip to article control options
No AccessRegular Paper

Unstructured Large-Eddy Simulations of Supersonic Jets

Published Online:https://doi.org/10.2514/1.J055084

Experience gained from previous jet noise studies with the unstructured large-eddy simulation flow solver “Charles” is summarized and put to practice for the predictions of supersonic jets issued from a converging–diverging round nozzle. In this work, the nozzle geometry is explicitly included in the computational domain using an unstructured body-fitted mesh. Two different mesh topologies are investigated, with emphasis on grid isotropy in the acoustic source-containing region, either directly or through the use of adaptive refinement, with grid size ranging from 42 to 55×106 control volumes. Three different operating conditions are considered: isothermal ideally expanded (fully expanded jet Mach number of Mj=1.5, temperature of Tj/T=1, and Reynolds number of Rej=300,000), heated ideally expanded (Mj=1.5, Tj/T=1.74, and Rej=155,000), and heated overexpanded (Mj=1.35, Tj/T=1.85, and Rej=130,000). Blind comparisons with the available experimental measurements carried out at the United Technologies Research Center for the same nozzle and operating conditions are presented. The results show good agreement for both the flow and sound fields. In particular, the spectra shape and levels are accurately captured in the simulations for both near-field and far-field noise. In these studies, sound radiation from the jet is computed using an efficient permeable formulation of the Ffowcs Williams–Hawkings equation in the frequency domain. Its parallel implementation is reviewed and parametric studies of the far-field noise predictions are presented. As an additional step toward best practices for jet aeroacoustics with unstructured large-eddy simulations, guidelines and suggestions for the mesh design, numerical setup, and acoustic postprocessing steps are discussed.

References

  • [1] Bodony D. J. and Lele S. K., “Current Status of Jet Noise Predictions Using Large-Eddy Simulation,” AIAA Journal, Vol. 46, No. 2, 2008, pp. 364–380. doi:https://doi.org/10.2514/1.24475 AIAJAH 0001-1452 LinkGoogle Scholar

  • [2] Bogey C., Bailly C. and Juvé D., “Noise Investigation of a High Subsonic, Moderate Reynolds Number Jet Using a Compressible Large Eddy Simulation,” Theoretical and Computational Fluid Dynamics, Vol. 16, No. 4, 2003, pp. 273–297. doi:https://doi.org/10.1007/s00162-002-0079-4 TCFDEP 0935-4964 CrossrefGoogle Scholar

  • [3] Bogey C., Bailly C. and Juvé D., “Investigation of Downstream and Sideline Subsonic Jet Noise Using Large Eddy Simulation,” Theoretical and Computational Fluid Dynamics, Vol. 20, No. 1, 2006, pp. 23–40. doi:https://doi.org/10.1007/s00162-005-0005-7 TCFDEP 0935-4964 CrossrefGoogle Scholar

  • [4] Bogey C. and Bailly C., “Influence of Nozzle-Exit Boundary-Layer Conditions on the Flow and Acoustic Fields of Initially Laminar Jets,” Journal of Fluid Mechanics, Vol. 663, Nov. 2010, pp. 507–538. doi:https://doi.org/10.1017/S0022112010003605 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [5] Bogey C., Mardsen O. and Bailly C., “Large-Eddy Simulation of the Flow and Acoustic Fields of a Reynolds Number 105 Subsonic Jet with Tripped Exit Boundary Layers,” Physics of Fluids, Vol. 23, No. 3, 2011, Paper 035104. doi:https://doi.org/10.1063/1.3555634 CrossrefGoogle Scholar

  • [6] Bogey C., Mardsen O. and Bailly C., “Influence of Initial Turbulence Level on the Flow and Sound Fields of a Subsonic Jet at a Diameter-Based Reynolds Number of 105,” Journal of Fluid Mechanics, Vol. 701, June 2012, pp. 352–385. doi:https://doi.org/10.1017/jfm.2012.162 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [7] Bogey C. and Mardsen O., “Identification of the Effects of the Nozzle-Exit Boundary-Layer Thickness and Its Corresponding Reynolds Number in Initially Highly Disturbed Subsonic Jets,” Physics of Fluids, Vol. 25, No. 5, 2013, Paper 055106. doi:https://doi.org/10.1063/1.4807071 CrossrefGoogle Scholar

  • [8] Bodony D., “Analysis of Sponge Zones for Computational Fluid Mechanics,” Journal of Computational Physics, Vol. 212, No. 2, 2005, pp. 681–702. doi:https://doi.org/10.1016/j.jcp.2005.07.014 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [9] Mani A., “Analysis and Optimization of Numerical Sponge Layers as a Nonreflective Boundary Treatment,” Journal of Computational Physics, Vol. 231, No. 2, 2012, pp. 704–716. doi:https://doi.org/10.1016/j.jcp.2011.10.017 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [10] Mani A., Larsson J. and Moin P., “Suitability of Artificial Bulk Viscosity for Large-Eddy Simulation of Turbulent Flows with Shocks,” Journal of Computational Physics, Vol. 228, No. 19, 2009, pp. 7368–7374. doi:https://doi.org/10.1016/j.jcp.2009.06.040 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [11] Johnsen E. and et al., “Assessment of High-Resolution Methods for Numerical Simulations of Compressible Turbulence with Shock Waves,” Journal of Computational Physics, Vol. 229, No. 4, 2010, pp. 1213–1237. doi:https://doi.org/10.1016/j.jcp.2009.10.028 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [12] de Cacqueray N., Bogey C. and Bailly C., “Investigation of a High-Mach-Number Overexpanded Jet Using Large-Eddy Simulation,” AIAA Journal, Vol. 49, No. 10, 2011, pp. 2171–2182. doi:https://doi.org/10.2514/1.J050952 AIAJAH 0001-1452 LinkGoogle Scholar

  • [13] Shur M. L., Spalart P. R. and Strelets M. K., “Noise Prediction for Increasingly Complex Jets. Part I: Methods and Tests,” International Journal of Aeroacoustics, Vol. 4, Nos. 3–4, 2005, pp. 213–246. doi:https://doi.org/10.1260/1475472054771376 CrossrefGoogle Scholar

  • [14] Shur M. L., Spalart P. R. and Strelets M. K., “Noise Prediction for Increasingly Complex Jets. Part II: Applications,” International Journal of Aeroacoustics, Vol. 4, Nos. 3–4, 2005, pp. 247–266. doi:https://doi.org/10.1260/1475472054771385 CrossrefGoogle Scholar

  • [15] Spalart P. R. and Shur M. L., “Variants of the Ffowcs Williams–Hawkings Equation and Their Coupling with Simulations of Hot Jets,” International Journal of Aeroacoustics, Vol. 8, No. 5, 2009, pp. 477–491. doi:https://doi.org/10.1260/147547209788549280 CrossrefGoogle Scholar

  • [16] Mendez S., Shoeybi M., Sharma A., Ham F. E., Lele S. K. and Moin P., “Large-Eddy Simulations of Perfectly-Expanded Supersonic Jets Using an Unstructured Solver,” AIAA Journal, Vol. 50, No. 5, 2012, pp. 1103–1118. doi:https://doi.org/10.2514/1.J051211 AIAJAH 0001-1452 LinkGoogle Scholar

  • [17] Khalighi Y., Nichols J. W., Ham F., Lele S. K. and Moin P., “Unstructured Large Eddy Simulation for Prediction of Noise Issued from Turbulent Jets in Various Configurations,” AIAA Paper  2011-2886, 2011. LinkGoogle Scholar

  • [18] Khalighi Y., Ham F., Moin P., Lele S. K., Colonius T., Schlinker R. H., Reba R. A. and Simonich J., “Unstructured Large Eddy Simulation Technology for Prediction and Control of Jet Noise,” Proceedings of ASME Turbo Expo 2010, ASME Paper  GT2010-22306, Glasgow, Scotland, U.K., 2010, pp. 57–70. doi:https://doi.org/10.1115/GT2010-22306 CrossrefGoogle Scholar

  • [19] Khalighi Y., Ham F., Moin P., Lele S. K., Schlinker R. H., Reba R. A. and Simonich J., “Noise Prediction of Pressure-Mismatched Jets Using Unstructured Large Eddy Simulation,” Proceedings of the ASME Turbo Expo, Vol. 1, ASME Paper  GT2011-46548, Vancouver, 2011, pp. 381–387. doi:https://doi.org/10.1115/GT2011-46548 CrossrefGoogle Scholar

  • [20] Brès G. A., Ham F. E., Nichols J. W. and Lele S. K., “Nozzle Wall Modeling in Unstructured Large Eddy Simulations for Hot Supersonic Jet Predictions,” AIAA Paper  2013-2142, 2013. LinkGoogle Scholar

  • [21] Nichols J. W., Ham F. E. and Lele S. K., “High-Fidelity Large-Eddy Simulation for Supersonic Rectangular Jet Noise Prediction,” AIAA Paper  2011-2919, 2011. LinkGoogle Scholar

  • [22] Nichols J. W., Ham F. E., Lele S. K. and Bridges J., “Aeroacoustics of a Supersonic Rectangular Jet: Experiments and LES Predictions,” AIAA Paper  2012-0678, 2012. Google Scholar

  • [23] Brès G. A., Nichols J. W., Lele S. K., Ham F. E., Schlinker R. H., Reba R. A. and Simonich J., “Unstructured Large Eddy Simulation of a Hot Supersonic Over-Expanded Jet with Chevrons,” AIAA Paper  2012-2213, 2012. LinkGoogle Scholar

  • [24] Nichols J. W., Lele S. K., Moin P., Ham F. E. and Bridges J. E., “Large-Eddy Simulation for Supersonic Rectangular Jet Noise Prediction: Effects of Chevrons,” AIAA Paper  2012-2212, 2012. Google Scholar

  • [25] Nichols J. W., Lele S. K. and Spyropoulos J. T., “The Source of Crackle Noise in Heated Supersonic Jets,” AIAA Paper  2013-2197, 2013. LinkGoogle Scholar

  • [26] Brès G. A., Bose S. T., Ham F. E. and Lele S. K., “Unstructured Large Eddy Simulations for Nozzle Interior Flow Modeling and Jet Noise Predictions,” AIAA Paper  2014-2601, 2014. LinkGoogle Scholar

  • [27] Gottlieb S. and Shu W., “Total Variation Diminishing Runge–Kutta Schemes,” Mathematics of Computation, Vol. 67, No. 221, 1998, pp. 73–85. doi:https://doi.org/10.1090/mcom/1998-67-221 MCMPAF 0025-5718 CrossrefGoogle Scholar

  • [28] Harten A., Lax P. and Van Leer B., “On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws,” SIAM Review, Vol. 25, No. 1, 1983, pp. 35–61. doi:https://doi.org/10.1137/1025002 SIREAD 0036-1445 CrossrefGoogle Scholar

  • [29] Hill D. J. and Pullin D. I., “Hybrid Tuned Center-Difference-WENO Method for Large Eddy Simulations in the Presence of Strong Shocks,” Journal of Computational Physics, Vol. 194, No. 2, 2004, pp. 435–450. doi:https://doi.org/10.1016/j.jcp.2003.07.032 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [30] Shi J., Hu C. and Shu C., “A Technique of Treating Negative Weights in WENO Schemes,” Journal of Computational Physics, Vol. 175, No. 1, 2002, pp. 108–127. doi:https://doi.org/10.1006/jcph.2001.6892 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [31] Vreman A., “An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications,” Physics of Fluids, Vol. 16, Jan. 2004, Paper 3670. CrossrefGoogle Scholar

  • [32] You D. and Moin P., “A Dynamic Global-Coefficient Subgrid-Scale Eddy-Viscosity Model for Large-Eddy Simulation in Complex Geometries,” Physics of Fluids, Vol. 19, No. 6, 2007, Paper 065110. doi:https://doi.org/10.1063/1.2739419 CrossrefGoogle Scholar

  • [33] Bogey C., Mardsen O. and Bailly C., “Flow and Acoustic Fields of Reynolds Number 105, Subsonic Jets with Tripped Exit Boundary Layers,” AIAA Paper  2010-3727, 2010. LinkGoogle Scholar

  • [34] Ffowcs Williams J. E. and Hawkings D. L., “Sound Generation by Turbulence and Surfaces in Arbitrary Motion,” Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, Vol. 264, No. 1151, 1969, pp. 321–342. doi:https://doi.org/10.1098/rsta.1969.0031 CrossrefGoogle Scholar

  • [35] Brentner K. S. and Farassat F., “Modeling Aerodynamically Generated Sound of Helicopter Rotors,” Progress in Aerospace Sciences, Vol. 39, Nos. 2–3, 2003, pp. 83–120. doi:https://doi.org/10.1016/S0376-0421(02)00068-4 PAESD6 0376-0421 CrossrefGoogle Scholar

  • [36] Lockard D. P., “An Efficient, Two-Dimensional Implementation of the Ffowcs Williams and Hawkings Equation,” Journal of Sound and Vibration, Vol. 229, No. 4, 2000, pp. 897–911. doi:https://doi.org/10.1006/jsvi.1999.2522 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [37] Lockard D. P., “A Comparison of Ffowcs Williams–Hawkings Solvers for Airframe Noise Applications,” AIAA Paper  2002-2580, 2002. LinkGoogle Scholar

  • [38] Schlinker R. H., Simonich J. C., Reba R. A., Colonius T. and Ladeinde F., “Decomposition of High Speed Jet Noise: Source Characteristics and Propagation Effects,” AIAA Paper  2008-2890, 2008. Google Scholar

  • [39] Schlinker R. H., Simonich J. C., Reba R. A., Colonius T., Gudmundsson K. and Ladeinde F., “Supersonic Jet Noise from Round and Chevron Nozzles: Experimental Studies,” AIAA Paper  2009-3257, 2009. Google Scholar

  • [40] Nichols J. W., Lele S. K., Ham F. E., Martens S. and Spyropoulos J. T., “Crackle Noise in Heated Supersonic Jets,” Journal of Engineering for Gas Turbines and Power, Vol. 135, No. 5, 2013, Paper 051202. JETPEZ 0742-4795 CrossrefGoogle Scholar

  • [41] Lorteau M., Cléro F. and Vuillot F., “Analysis of Noise Radiation Mechanisms in a Hot Subsonic Jet from a Validated Large Eddy Simulation Solution,” Physics of Fluids, Vol. 27, No. 7, 2015, Paper 075108. doi:https://doi.org/10.1063/1.4926792 CrossrefGoogle Scholar

  • [42] Poinsot T. J. and Lele S. K., “Boundary Conditions for Direct Simulations of Compressible Viscous Flows,” Journal of Computational Physics, Vol. 101, No. 1, 1992, pp. 104–129. doi:https://doi.org/10.1016/0021-9991(92)90046-2 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [43] Freund J. B., “Proposed Inflow/Outflow Boundary Condition for Direct Computation of Aerodynamic Sound,” AIAA Journal, Vol. 35, No. 4, 1997, pp. 740–742. doi:https://doi.org/10.2514/2.167 AIAJAH 0001-1452 LinkGoogle Scholar

  • [44] Bradshaw P., Ferriss D. H. and Johnson R. F., “Turbulence in the Noise-Producing Region of a Circular Jet,” Journal of Fluid Mechanics, Vol. 19, No. 4, 1964, pp. 591–624. doi:https://doi.org/10.1017/S0022112064000945 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [45] Hill G., Jenkins R. C. and Gilbert B. L., “Effects of the Initial Boundary-Layer State on Turbulent Jet Mixing,” AIAA Journal, Vol. 14, No. 11, 1976, pp. 1513–1514. doi:https://doi.org/10.2514/3.61491 AIAJAH 0001-1452 LinkGoogle Scholar

  • [46] Bridges J. E. and Hussain A. K. M. F., “Roles of Initial Conditions and Vortex Pairing in Jet Noise,” Journal of Sound and Vibration, Vol. 117, No. 2, 1987, pp. 289–311. doi:https://doi.org/10.1016/0022-460X(87)90540-2 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [47] Zaman K. B. M. Q., “Effect of Initial Boundary-Layer State on Subsonic Jet Noise,” AIAA Journal, Vol. 50, No. 8, 2012, pp. 1784–1795. doi:https://doi.org/10.2514/1.J051712 AIAJAH 0001-1452 LinkGoogle Scholar

  • [48] Fontaine R. A., Elliot G. S., Austin J. M. and Freund J. B., “Very Near-Nozzle Shear-Layer Turbulence and Jet Noise,” Journal of Fluid Mechanics, Vol. 770, May 2015, pp. 27–51. doi:https://doi.org/10.1017/jfm.2015.119 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [49] Pouangué A. F., Sanjosé M. and Moreau S., “Jet Noise Simulation with Realistic Nozzle Geometries Using Fully Unstructured LES Solver,” AIAA Paper  2012-2190, 2012. Google Scholar

  • [50] Viswanathan K. and Clark L. T., “Effect of Nozzle Internal Contour on Jet Aeroacoustics,” International Journal of Aeroacoustics, Vol. 3, No. 2, 2004, pp. 103–135. doi:https://doi.org/10.1260/1475472041494819 CrossrefGoogle Scholar

  • [51] Viswanathan K., “Aeroacoustics of Hot Jets,” Journal of Fluid Mechanics, Vol. 516, Oct. 2004, pp. 39–82. doi:https://doi.org/10.1017/S0022112004000151 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [52] Brès G. A., Jordan P., Colonius T., Le Rallic M., Jaunet V. and Lele S. K., “Large Eddy Simulation of a Mach 0.9 Turbulent Jet,” Proceedings of the Summer Program, Center for Turbulence Research, Stanford Univ., Stanford, CA, 2014, pp. 221–230. Google Scholar

  • [53] Brès G. A., Jaunet V., Le Rallic M., Jordan P., Colonius T. and Lele S. K., “Large Eddy Simulation for Jet Noise: The Importance of Getting the Boundary Layer Right,” AIAA Paper  2015-2535, 2015. Google Scholar

  • [54] Brès G. A., Jaunet V., Le Rallic M., Jordan P., Towne A., Schmidt O., Colonius T., Cavalieri A. V. and Lele S. K., “Large Eddy Simulation for Jet Noise: Azimuthal Decomposition and Intermittency of the Radiated Sound,” AIAA Paper  2016-3050, 2016. Google Scholar

  • [55] Juvé D., Sunyach M. and Comte-Bellot G., “Intermittency of the Noise Emission in Subsonic Cold Jets,” Journal of Sound and Vibration, Vol. 71, No. 3, 1980, pp. 319–332. doi:https://doi.org/10.1016/0022-460X(80)90416-2 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [56] Cavalieri A. V. G., Daviller G., Comte P., Jordan P., Tadmor G. and Gervais Y., “Using Large Eddy Simulation to Explore Sound-Source Mechanism in Jets,” Journal of Sound and Vibration, Vol. 330, No. 17, 2011, pp. 4098–4113. doi:https://doi.org/10.1016/j.jsv.2011.04.018 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [57] Nichols J. W., Ham F., Lele S. K., Khalighi Y. and Spyropoulos J., “High-Fidelity LES of Asymmetric Supersonic Jets,” Proceedings of DoD High Performance Computing Modernization Program User Group Conference, 2011, pp. 21–29, https://www.hpc.mil/images/hpcdocs/newsroom/ugc_2011_proceedings_small.pdf. Google Scholar

  • [58] Tam C. K. W., “Supersonic Jet Noise,” Annual Review of Fluid Mechanics, Vol. 27, No. 1, 1995, pp. 17–43. doi:https://doi.org/10.1146/annurev.fl.27.010195.000313 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [59] Tam C. K. W., “Mach Wave Radiation from High-Speed Jets,” AIAA Journal, Vol. 47, No. 10, 2009, pp. 2440–2448. doi:https://doi.org/10.2514/1.42644 AIAJAH 0001-1452 LinkGoogle Scholar

  • [60] Papamoschou D., “Mach Wave Elimination in Supersonic Jets,” AIAA Journal, Vol. 35, No. 10, 1997, pp. 1604–1611. doi:https://doi.org/10.2514/2.19 AIAJAH 0001-1452 LinkGoogle Scholar

  • [61] Colonius T. and Lele S., “Computational Aeroacoustics: Progress in Nonlinear Problems of Sound Generation,” Progress in Aerospace Sciences, Vol. 40, No. 6, 2004, pp. 345–416. doi:https://doi.org/10.1016/j.paerosci.2004.09.001 PAESD6 0376-0421 CrossrefGoogle Scholar

  • [62] Saxena S. and Morris P. J., “Noise Predictions for High Subsonic Single and Dual-Stream Jets in Flight,” AIAA Paper  2012-2082, 2012. LinkGoogle Scholar

  • [63] Lau J. C., “Effects of Exit Mach Number and Temperature on Mean-Flow and Turbulence Characteristics in Round Jets,” Journal of Fluid Mechanics, Vol. 105, April 1981, pp. 193–218. doi:https://doi.org/10.1017/S0022112081003170 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [64] Tam C. K. W., “Dimensional Analysis of Jet-Noise Data,” AIAA Journal, Vol. 44, No. 3, 2006, pp. 512–522. doi:https://doi.org/10.2514/1.14552 AIAJAH 0001-1452 LinkGoogle Scholar

  • [65] Pack D. C., “A Note on Prandtl’s Formula for the Wavelength of a Supersonic Gas Jet,” Quarterly Journal of Mechanics and Applied Mathematics, Vol. 3, No. 2, 1950, pp. 173–181. doi:https://doi.org/10.1093/qjmam/3.2.173 CrossrefGoogle Scholar

  • [66] Tam C. K. W. and Tanna H. K., “Shock Associated Noise of Supersonic Jets from Convergent-Divergent Nozzles,” Journal of Sound and Vibration, Vol. 81, No. 3, 1982, pp. 337–358. doi:https://doi.org/10.1016/0022-460X(82)90244-9 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [67] Munday D., Gutmark E., Liu J. and Kailasanath K., “Flow Structure and Acoustics of Supersonic Jet from Conical Convergent-Divergent Nozzles,” Physics of Fluids, Vol. 23, No. 11, 2011, Paper 116102. doi:https://doi.org/10.1063/1.3657824 CrossrefGoogle Scholar

  • [68] Norum T. D. and Seiner J. M., “Measurements of Mean Static Pressure and Far-Field Acoustics of Shock-Containing Supersonic Jets,” NASA TM 84521, 1982. Google Scholar

  • [69] Bradshaw P., “The Effect of Initial Conditions on the Development of a Free Shear Layer,” Journal of Fluid Mechanics, Vol. 26, No. 2, 1966, pp. 225–236. doi:https://doi.org/10.1017/S0022112066001204 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [70] Hussain A. K. M. F. and Zedan M. F., “Effects of the Initial Condition on the Axisymmetric Free Shear Layer: Effects of the Initial Momentum Thickness,” Physics of Fluids, Vol. 21, No. 7, 1978, pp. 1100–1112. doi:https://doi.org/10.1063/1.862349 CrossrefGoogle Scholar

  • [71] Uzun A. and Hussaini Y. M., “Investigation of High Frequency Noise Generation in the Near-Nozzle Region of a Jet Using Large Eddy Simulation,” Theoretical and Computational Fluid Dynamics, Vol. 21, No. 4, 2007, pp. 291–321. doi:https://doi.org/10.1007/s00162-007-0048-z TCFDEP 0935-4964 CrossrefGoogle Scholar

  • [72] Sharma A. and Lele S. K., “Effects of Heating on Noise Radiation from Turbulent Mixing Layers with Initially Laminar and Turbulent Boundary Layers,” AIAA Paper  2012-1168, 2012. LinkGoogle Scholar

  • [73] Jordan P. and Colonius T., “Wave Packets and Turbulent Jet Noise,” Annual Review of Fluid Mechanics, Vol. 45, No. 1, 2013, pp. 173–195. doi:https://doi.org/10.1146/annurev-fluid-011212-140756 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [74] Ducros F., Ferrand V., Nicoud F., Weber C., Darracq D., Gacherieu C. and Poinsot T., “Large-Eddy Simulation of the Shock-Turbulence Interaction,” Journal of Computational Physics, Vol. 152, No. 2, 1999, pp. 517–549. doi:https://doi.org/10.1006/jcph.1999.6238 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [75] Bhagatwala A. and Lele S., “A Modified Artificial Nonlinear Viscosity Approach for Compressible Turbulence Simulations,” Journal of Computational Physics, Vol. 228, No. 14, 2009, pp. 4965–4969. doi:https://doi.org/10.1016/j.jcp.2009.04.009 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [76] Brès G. A., Nichols J. W., Lele S. K. and Ham F. E., “Towards Best Practices for Jet Noise Predictions with Unstructured Large Eddy Simulations,” AIAA Paper  2012-2965, 2012. LinkGoogle Scholar

  • [77] Harper-Bourne M. and Fisher M. J., “The Noise from Shock Waves in Supersonic Jets,” AGARD Conference on Noise Mechanisms, CP 131, Brussels, Sept. 1973, pp. 11-1–11-13. Google Scholar

  • [78] Tam C. K. W., Seiner J. M. and Yu J. C., “Proposed Relationship Between Broadband Shock Associated Noise and Screech Tones,” Journal of Sound and Vibration, Vol. 110, No. 2, 1986, pp. 309–321. doi:https://doi.org/10.1016/S0022-460X(86)80212-7 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [79] Tam C. K. W., Pastouchenko N. N. and Viswanathan K., “Broadband Shock-Cell Noise from Dual Stream Jets,” Journal of Sound and Vibration, Vol. 324, Nos. 3–5, 2009, pp. 861–891. doi:https://doi.org/10.1016/j.jsv.2009.02.012 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [80] Bahr C. J., Zawodny N. S., Yardibi T., Liu F., Wetzel D., Bertolucci B. and Cattafesta J. N., “Shear Layer Time-Delay Correction Using a Non-Intrusive Acoustic Point Source,” International Journal of Aeroacoustics, Vol. 10, Nos. 5–6, 2011, pp. 497–530. doi:https://doi.org/10.1260/1475-472X.10.5-6.497 CrossrefGoogle Scholar

  • [81] Bahr C. J., Zawodny N. S., Bertolucci B., Li J., Sheplak M. and Cattafesta J. N., “A Plasma-Based Non-Intrusive Point Source for Acoustic Beamforming Applications,” Journal of Sound and Vibration, Vol. 344, May 2015, pp. 59–80. doi:https://doi.org/10.1016/j.jsv.2015.01.023 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [82] Rahier G., Prieur J., Vuillot F., Lupoglazoff N. and Biancherin A., “Investigation of Integral Surface Formulations for Acoustic Predictions of Hot Jets Starting from Unsteady Aerodynamic Simulations,” AIAA Paper  2003-3164, 2003. LinkGoogle Scholar

  • [83] Uzun A., Lyrintsis A. S. and Blaisdell G. A., “Coupling of Integral Acoustics Methods with LES for Jet Noise Prediction,” International Journal of Aeroacoustics, Vol. 3, No. 4, 2004, pp. 297–346. doi:https://doi.org/10.1260/1475472043499290 CrossrefGoogle Scholar

  • [84] Mendez S., Shoeybi M., Sharma A., Lele S. K. and Moin P., “Post-Processing of Large-Eddy Simulations for Jet Noise Predictions,” Annual Research Briefs, Center for Turbulence Research, Stanford Univ., Stanford, CA, 2009, pp. 17–31. Google Scholar

  • [85] Mendez S., Shoeybi M., Lele S. K. and Moin P., “On the Use of the Ffowcs Williams-Hawkings Equation to Predict Far-Field Jet Noise from Large-Eddy Simulations,” International Journal of Aeroacoustics, Vol. 12, Nos. 1–2, 2013, pp. 1–20. doi:https://doi.org/10.1260/1475-472X.12.1-2.1 CrossrefGoogle Scholar

  • [86] Morfey C. L. and Wright M. C. M., “Extension of Lighthill’s Acoustic Analogy with Application to Computations Aeroacoustics,” Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, Vol. 463, No. 2085, 2007, pp. 2101–2127. doi:https://doi.org/10.1098/rspa.2007.1864 CrossrefGoogle Scholar

  • [87] Richards C. D. and Pitts W. M., “Global Density Effects on the Self-Preservation Behaviour of Turbulent Free Jets,” Journal of Fluid Mechanics, Vol. 254, 1993, pp. 417–435. doi:https://doi.org/10.1017/S0022112093002204 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [88] Zaman K. B. M. Q., “Asymptotic Spreading Rates of Initially Compressible Jets—Experiment and Analysis,” Physics of Fluids, Vol. 10, No. 10, 1998, pp. 2652–2660. doi:https://doi.org/10.1063/1.869778 CrossrefGoogle Scholar

  • [89] Zaman K. B. M. Q., “Spreading Characteristics of Compressible Jets from Nozzles of Various Geometries,” Journal of Fluid Mechanics, Vol. 383, March 1999, pp. 197–228. doi:https://doi.org/10.1017/S0022112099003833 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [90] Viswanathan K. and Czech M. J., “Measurement and Modeling of Effect of Forward Flight on Jet Noise,” AIAA Journal, Vol. 49, No. 1, 2011, pp. 216–234. doi:https://doi.org/10.2514/1.J050719 AIAJAH 0001-1452 LinkGoogle Scholar

  • [91] Lighthill M. J., “On Sound Generated Aerodynamically: I. General Theory,” Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, Vol. 211, No. 1107, 1952, pp. 564–587. doi:https://doi.org/10.1098/rspa.1952.0060 CrossrefGoogle Scholar

  • [92] Wells V. L. and Han A. Y., “Acoustics of a Moving Source in a Moving Medium with Application to Propeller Noise,” Journal of Sound and Vibration, Vol. 184, No. 4, 1995, pp. 651–663. doi:https://doi.org/10.1006/jsvi.1995.0339 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [93] Najafi-Yazdi A., Brès G. A. and Mongeau L., “An Acoustic Analogy Formulation for Moving Sources in Uniformly Moving Media,” Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, Vol. 467, No. 2125, 2011, pp. 144–165. doi:https://doi.org/10.1098/rspa.2010.0172 CrossrefGoogle Scholar

  • [94] Brès G. A., Freed D., Wessels M., Noelting S. and Pérot F., “Flow and Noise Predictions for the Tandem Cylinder Aeroacoustic Benchmark,” Physics of Fluids, Vol. 24, No. 3, 2012, Paper 036101. doi:https://doi.org/10.1063/1.3685102 CrossrefGoogle Scholar