Skip to main content

IMPORTANT NOTICE: The ARC website is being updated on Tuesday, May 28, 2024. ARC will be in a "Read Only" mode. Viewing and downloading content will be available but other functions are restricted. For further inquiries, please contact [email protected].

Skip to article control options
No AccessRegular Paper

Flow Structures Around a Flapping-Wing Micro Air Vehicle Performing a Clap-and-Peel Motion

Published Online:https://doi.org/10.2514/1.J055146

The vortical flow structures generated by the flapping wings of the DelFly II micro air vehicle in hovering flight configuration are investigated using particle image velocimetry. Synchronous force measurements are carried out to establish the relation between the unsteady forces and force generation mechanisms: particularly, the leading-edge vortex and the clap-and-peel motion. The formation of conical leading-edge vortices on both wings is revealed, which occurs rapidly at the start of the outstroke as a result of the wing–wing interaction. The leading-edge vortices of the outstroke interact with those of the instroke, which are shed and, by mutual induction, advect upstream as a vortex pair at the end of previous instroke. The leading-edge vortex pairs induce a strong inflow into the region formed between the upper and lower wings during the peeling phase, resulting in the formation of a low-pressure region. This, together with the leading-edge vortices and a momentum increase formed by the clap, accounts for the generation of relatively higher forces during the outstroke. The cycle-averaged forces are estimated with reasonable accuracy by means of a momentum-based approach using wake velocity information with an average error of 15%.

References

  • [1] Carmichael B., “Low Reynolds Number Airfoil Survey,” NASA TR NASA-CR-165803-VOL-1, 1981. Google Scholar

  • [2] Bohorquez F., Samuel P., Sirohi J., Pines D., Rudd L. and Perel R., “Design, Analysis and Hover Performance of a Rotary Wing Micro Air Vehicle,” Journal of the American Helicopter Society, Vol. 48, No. 2, 2003, pp. 80–90. doi:https://doi.org/10.4050/JAHS.48.80 JHESAK 0002-8711 CrossrefGoogle Scholar

  • [3] Pines D. J. and Bohorquez F., “Challenges Facing Future Micro-Air-Vehicle Development,” Journal of Aircraft, Vol. 43, No. 2, 2006, pp. 290–305. doi:https://doi.org/10.2514/1.4922 LinkGoogle Scholar

  • [4] Hein B. R. and Chopra I., “Hover Performance of a Micro Air Vehicle: Rotors at Low Reynolds Number,” Journal of the American Helicopter Society, Vol. 52, No. 3, 2007, p. 254–263. doi:https://doi.org/10.4050/JAHS.52.254 JHESAK 0002-8711 CrossrefGoogle Scholar

  • [5] Bohorquez F., Pines D. and Samuel P. D., “Small Rotor Design Optimization Using Blade Element Momentum Theory and Hover Tests,” Journal of Aircraft, Vol. 47, No. 1, Jan. 2010, pp. 268–283. doi:https://doi.org/10.2514/1.45301 LinkGoogle Scholar

  • [6] Percin M., “Aerodynamic Mechanisms of Flapping Flight,” Ph.D. Dissertation, Delft Univ. of Technology, Delft, The Netherlands, 2015. Google Scholar

  • [7] Shyy W., Berg M. and Ljungqvist D., “Flapping and Flexible Wings for Biological and Micro Air Vehicles,” Progress in Aerospace Sciences, Vol. 35, No. 5, 1999, pp. 455–505. doi:https://doi.org/10.1016/S0376-0421(98)00016-5 PAESD6 0376-0421 CrossrefGoogle Scholar

  • [8] Lehmann F.-O., “The Mechanisms of Lift Enhancement in Insect Flight,” Die Naturwissenschaften, Vol. 91, No. 3, March 2004, pp. 101–122. doi:https://doi.org/10.1007/s00114-004-0502-3 CrossrefGoogle Scholar

  • [9] Sane S. P., “The Aerodynamics of Insect Flight,” Journal of Experimental Biology, Vol. 206, No. 23, Dec. 2003, pp. 4191–4208. doi:https://doi.org/10.1242/jeb.00663 CrossrefGoogle Scholar

  • [10] Shyy W., Aono H., Chimakurthi S., Trizila P., Kang C.-K., Cesnik C. and Liu H., “Recent Progress in Flapping Wing Aerodynamics and Aeroelasticity,” Progress in Aerospace Sciences, Vol. 46, No. 7, Oct. 2010, pp. 284–327. doi:https://doi.org/10.1016/j.paerosci.2010.01.001 PAESD6 0376-0421 CrossrefGoogle Scholar

  • [11] Maxworthy T., “Experiments on the Weis-Fogh Mechanism of Lift Generation by Insects in Hovering Flight. Part 1. Dynamics of the ‘Fling’,” Journal of Fluid Mechanics, Vol. 93, No. 1, 1979, pp. 47–63. doi:https://doi.org/10.1017/S0022112079001774 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [12] Ellington C. P., van den Berg C., Willmott A. P. and Thomas A. L. R., “Leading-Edge Vortices in Insect Flight,” Nature, Vol. 384, No. 6610, 1996, pp. 626–630. doi:https://doi.org/10.1038/384626a0 CrossrefGoogle Scholar

  • [13] Birch J. M. and Dickinson M. H., “Spanwise Flow and the Attachment of the Leading-Edge Vortex on Insect Wings,” Nature, Vol. 412, No. 6848, Aug. 2001, pp. 729–733. doi:https://doi.org/10.1038/35089071 CrossrefGoogle Scholar

  • [14] Birch J. M., Dickson W. B. and Dickinson M. H., “Force Production and Flow Structure of the Leading Edge Vortex on Flapping Wings at High and Low Reynolds Numbers,” Journal of Experimental Biology, Vol. 207, No. 7, March 2004, pp. 1063–1072. doi:https://doi.org/10.1242/jeb.00848 CrossrefGoogle Scholar

  • [15] Zhao L., Deng X. and Sane S. P., “Modulation of Leading Edge Vorticity and Aerodynamic Forces in Flexible Flapping Wings,” Bioinspiration and Biomimetics, Vol. 6, No. 3, 2011, Paper 036007. CrossrefGoogle Scholar

  • [16] Pitt Ford C. W. and Babinsky H., “Lift and the Leading-Edge Vortex,” Journal of Fluid Mechanics, Vol. 720, Feb. 2013, pp. 280–313. doi:https://doi.org/10.1017/jfm.2013.28 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [17] Percin M. and van Oudheusden B. W., “Three-Dimensional Flow Structures and Unsteady Forces on Pitching and Surging Revolving Flat Plates,” Experiments in Fluids, Vol. 56, No. 2, 2015, pp. 1–19. EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [18] Srygley R. B. and Thomas A. L. R., “Unconventional Lift-Generating Mechanisms in Free-Flying Butterflies,” Nature, Vol. 420, No. 6916, Dec. 2002, pp. 660–664. doi:https://doi.org/10.1038/nature01223 CrossrefGoogle Scholar

  • [19] Bomphrey R. J., Taylor G. K. and Thomas A. L. R., “Smoke Visualization of Free-Flying Bumblebees Indicates Independent Leading-Edge Vortices on Each Wing Pair,” Experiments in Fluids, Vol. 46, No. 5, April 2009, pp. 811–821. doi:https://doi.org/10.1007/s00348-009-0631-8 EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [20] Muijres F. T., Johansson L. C., Barfield R., Wolf M., Spedding G. R. and Hedenström A., “Leading-Edge Vortex Improves Lift in Slow-Flying Bats,” Science, Vol. 319, No. 5867, Feb. 2008, pp. 1250–1253. doi:https://doi.org/10.1126/science.1153019 SCIEAS 0036-8075 CrossrefGoogle Scholar

  • [21] Muijres F. T., Johansson L. C., Bowlin M. S., Winter Y. and Hedenström A., “Comparing Aerodynamic Efficiency in Birds and Bats Suggests Better Flight Performance in Birds,” PloS One, Vol. 7, No. 5, Jan. 2012. doi:https://doi.org/10.1371/journal.pone.0037335 POLNCL 1932-6203 CrossrefGoogle Scholar

  • [22] Muijres F. T., Johansson L. C., Winter Y. and HedenstrÃűm A., “Leading Edge Vortices in Lesser Long-Nosed Bats Occurring at Slow But Not Fast Flight Speeds,” Bioinspiration and Biomimetics, Vol. 9, No. 2, 2014, Paper 025006. CrossrefGoogle Scholar

  • [23] Lehmann F.-O., Sane S. P. and Dickinson M. H., “The Aerodynamic Effects of Wing-Wing Interaction in Flapping Insect Wings,” Journal of Experimental Biology, Vol. 208, No. 16, Aug. 2005, pp. 3075–3092. doi:https://doi.org/10.1242/jeb.01744 CrossrefGoogle Scholar

  • [24] Miller L. A. and Peskin C. S., “Flexible Clap and Fling in Tiny Insect Flight,” Journal of Experimental Biology, Vol. 212, No. 19, Oct. 2009, pp. 3076–3090. doi:https://doi.org/10.1242/jeb.028662 CrossrefGoogle Scholar

  • [25] Ellington C. P., “The Aerodynamics of Hovering Insect Flight. IV. Aeorodynamic Mechanisms,” Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences (1934–1990), Vol. 305, No. 1122, Feb. 1984, pp. 79–113. doi:https://doi.org/10.1098/rstb.1984.0052 CrossrefGoogle Scholar

  • [26] Sirohi J., “Chapter 5—Bioinspired and Biomimetic Microflyers,” Engineered Biomimicry, edited by Lakhtakia A. and Martin-Palma R. J., Elsevier, Boston, MA, 2013, pp. 107–138. CrossrefGoogle Scholar

  • [27] de Croon G. C. H. E., Groen M. A., de Wagter C., Remes B. D. W., Ruijsink R. and van Oudheusden B. W., “Design, Aerodynamics, and Autonomy of the DelFly,” Bioinspiration and Biomimetics, Vol. 7, No. 2, 2012, Paper 025003. doi:https://doi.org/10.1088/1748-3182/7/2/025003 1748-3182 CrossrefGoogle Scholar

  • [28] de Croon G., Perçin M., Remes B., Ruijsink R. and De Wagter C., The DelFly—Design, Aerodynamics, and Artificial Intelligence of a Flapping Wing Robot, Springer, Houten, The Netherlands, 2016. Google Scholar

  • [29] Percin M., van Oudheusden B., Eisma H. and Remes B., “Three-Dimensional Vortex Wake Structure of a Flapping-Wing Micro Aerial Vehicle in Forward Flight Configuration,” Experiments in Fluids, Vol. 55, No. 9, 2014, Paper 1806. doi:https://doi.org/10.1007/s00348-014-1806-5 EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [30] Deng S. and van Oudheusden B., “Wake Structure Visualization of a Flapping-Wing Micro-Air-Vehicle in Forward Flight,” Aerospace Science and Technology, Vol. 50, March 2016, pp. 204–211. doi:https://doi.org/10.1016/j.ast.2016.01.003 CrossrefGoogle Scholar

  • [31] de Clercq K. M. E., “Flow Visualization and Force Measurements on a Hovering Flapping-Wing MAV ‘DelFly II’,” M.S. Thesis, Delft Univ. of Technology, Delft, The Netherlands, 2009. LinkGoogle Scholar

  • [32] Groen M., “PIV and Force Measurements on the Flapping-Wing MAV DelFly II,” M.S. Thesis, Delft Univ. of Technology, Delft, The Netherlands, 2010. Google Scholar

  • [33] Tarascio M. J., Ramasamy M., Chopra I. and Leishman J. G., “Flow Visualization of Micro Air Vehicle Scaled Insect-Based Flapping Wings,” Journal of Aircraft, Vol. 42, No. 2, March 2005, pp. 385–390. doi:https://doi.org/10.2514/1.6055 LinkGoogle Scholar

  • [34] Seshadri P., Benedict M. and Chopra I., “Understanding Micro Air Vehicle Flapping-Wing Aerodynamics Using Force and Flowfield Measurements,” Journal of Aircraft, Vol. 50, No. 4, July 2013, pp. 1070–1087. doi:https://doi.org/10.2514/1.C031968 LinkGoogle Scholar

  • [35] Ansari S. A., Knowles K. and Zbikowski R., “Insectlike Flapping Wings in the Hover, Part 1: Effect of Wing Kinematics,” Journal of Aircraft, Vol. 45, No. 6, 2008, pp. 1945–1954. doi:https://doi.org/10.2514/1.35311 LinkGoogle Scholar

  • [36] Ansari S., Żbikowski R. and Knowles K., “Non-Linear Unsteady Aerodynamic Model for Insect-Like Flapping Wings in the Hover. Part 1: Methodology and Analysis,” Journal of Aerospace Engineering, Vol. 220, No. 2, 2006, pp. 61–83. doi:https://doi.org/10.1243/09544100JAERO49 CrossrefGoogle Scholar

  • [37] Ansari S., Żbikowski R. and Knowles K., “Non-Linear Unsteady Aerodynamic Model for Insect-Like Flapping Wings in the Hover. Part 2: Implementation and Validation,” Journal of Aerospace Engineering, Vol. 220, No. 3, 2006, pp. 169–186. doi:https://doi.org/10.1243/09544100JAERO50 Google Scholar

  • [38] Ramananarivo S., Godoy-Diana R. and Thiria B., “Rather than Resonance, Flapping Wing Flyers May Play on Aerodynamics to Improve Performance,” Proceedings of the National Academy of Sciences, Vol. 108, No. 15, 2011, pp. 5964–5969. doi:https://doi.org/10.1073/pnas.1017910108 CrossrefGoogle Scholar

  • [39] Bomphrey R. J., “Advances in Animal Flight Aerodynamics Through Flow Measurement,” Evolutionary Biology, Vol. 39, No. 1, 2012, pp. 1–11. doi:https://doi.org/10.1007/s11692-011-9134-7 EVBIAI 0071-3260 CrossrefGoogle Scholar

  • [40] Caetano J., Percin M., van Oudheusden B., Remes B., de Wagter C., de Croon G. and de Visser C., “Error Analysis and Assessment of Unsteady Forces Acting on a Flapping Wing Micro Air Vehicle: Free Flight Versus Wind-Tunnel Experimental Methods,” Bioinspiration and Biomimetics, Vol. 10, No. 5, 2015. CrossrefGoogle Scholar

  • [41] Percin M., van Oudheusden B., de Croon G. and Remes B., “Force Generation and Wing Deformation Characteristics of a Flapping-Wing Micro air Vehicle ‘DelFly II’ in Hovering Flight,” Bioinspiration and Biomimetics, Vol. 11, No. 3, 2016. CrossrefGoogle Scholar

  • [42] Groen M., Bruggeman B., Remes B., Ruijsink R., Van Oudheusden B. and Bijl H., “Improving Flight Performance of the Flapping Wing MAV DelFly II,” International Micro Air Vehicle Conference and Flight Competition, Braunschweig, Germany, July 2010, pp. 189–205. Google Scholar

  • [43] de Baar J., Percin M., Dwight R., Oudheusden B. W. and Bijl H., “Kriging Regression of PIV Data Using a Local Error Estimate,” Experiments in Fluids, Vol. 55, No. 1, Jan. 2014, Paper 1650. doi:https://doi.org/10.1007/s00348-013-1650-z EXFLDU 0723-4864 CrossrefGoogle Scholar