Skip to main content
Skip to article control options
No AccessRegular Article

Electrohydrodynamic Thrust for In-Atmosphere Propulsion

Published Online:

The electrohydrodynamic thrust generated by wire–cylinder electrodes under high dc voltage is experimentally analyzed. Some recent experimental studies have shown that electrohydrodynamic thrusters produced by corona discharge and ionic wind are able to deliver high thrust-to-power ratio, which reopens prospects for electrohydrodynamic propulsion. From simple considerations based on ultralight aircraft mass, aerodynamics, battery mass, and experimental electrohydrodynamic thrust densities, their potential for applications is showcased. Furthermore, an experimental study is performed, for which the experimental observations are presented in terms of electric field and thrust density. This allows a simplified and synthetic presentation of propulsive properties. Various experimental biases have been identified and corrected. The measure of time-periodic oscillations of the airflow in the back of the thruster pinpoints a possible wake effect due to the impact of ionic wind on electrodes. The variations of the associated drag are studied when varying the position of the collecting electrodes. It is shown that aerodynamic losses can be significant in experimental electrohydrodynamic thrusters.


  • [1] Fridman A., Chirokov A. and Gutsol A., “Non-Thermal Atmospheric Pressure Discharges,” Journal of Physics D: Applied Physics, Vol. 38, No. 2, 2005, p. R1. doi: JPAPBE 0022-3727 CrossrefGoogle Scholar

  • [2] Robinson M., “Movement of Air in the Electric Wind of the Corona Discharge,” Transactions of the American Institute of Electrical Engineers, Vol. 80, No. 2, 1961, pp. 143–150. TAEEA5 0096-3860 CrossrefGoogle Scholar

  • [3] Yabe A., Mori Y. and Hijikata K., “EHD Study of the Corona Wind Between Wire and Plate Electrodes,” AIAA Journal, Vol. 16, No. 4, 1978, pp. 340–345. doi: AIAJAH 0001-1452 LinkGoogle Scholar

  • [4] Rickard M., Dunn-Rankin D., Weinberg F. and Carleton F., “Characterization of Ionic Wind Velocity,” Journal of Electrostatics, Vol. 63, Nos. 6–10, 2005, pp. 711–716. doi: JOELDH 0304-3886 CrossrefGoogle Scholar

  • [5] Moreau E., Benard N., Lan-Sun-Luk J.-D. and Chabriat J.-P., “Electrohydrodynamic Force Produced by a Wire-to-Cylinder DC Corona Discharge in Air at Atmospheric Pressure,” Journal of Physics D: Applied Physics, Vol. 46, No. 47, 2013, Paper 475204. doi: JPAPBE 0022-3727 CrossrefGoogle Scholar

  • [6] Mizeraczyk J., Podlinski J., Niewulis A. and Berendt A., “Recent Progress in Experimental Studies of Electro-Hydrodynamic Flow in Electrostatic Precipitators,” Journal of Physics: Conference Series, Vol. 418, 2013, Paper 012068. JPCSDZ 1742-6588 CrossrefGoogle Scholar

  • [7] Colas D. F., Ferret A., Pai D. Z., Lacoste D. A. and Laux C. O., “Ionic Wind Generation by a Wire–Cylinder–Plate Corona Discharge in Air at Atmospheric Pressure,” Journal of Applied Physics, Vol. 108, No. 10, 2010, Paper 103306. doi: JAPIAU 0021-8979 CrossrefGoogle Scholar

  • [8] Moreau E. and Touchard G., “Enhancing the Mechanical Efficiency of Electric Wind in Corona Discharges,” Journal of Electrostatics, Vol. 66, Nos. 1–2, 2008, pp. 39–44. doi: JOELDH 0304-3886 CrossrefGoogle Scholar

  • [9] Kim C., Park D., Noh K. and Hwang J., “Velocity and Energy Conversion Efficiency Characteristics of Ionic Wind Generator in a Multistage Configuration,” Journal of Electrostatics, Vol. 68, No. 1, 2010, pp. 36–41. doi: JOELDH 0304-3886 CrossrefGoogle Scholar

  • [10] Bondar H. and Bastien F., “Effect of Neutral Fluid Velocity on Direct Conversion from Electrical to Fluid Kinetic Energy in an Electro-Fluid-Dynamics (EFD) Device,” Journal of Physics D: Applied Physics, Vol. 19, No. 9, 1986, pp. 1657–1663. doi: JPAPBE 0022-3727 CrossrefGoogle Scholar

  • [11] Singhal V. and Garimella S. V., “Influence of Bulk Fluid Velocity on the Efficiency of Electrohydrodynamic Pumping,” Journal of Fluids Engineering Transactions of the ASME, Vol. 127, No. 3, 2005, p. 484. doi: CrossrefGoogle Scholar

  • [12] Go D. B., Maturana R. A., Fisher T. S. and Garimella S. V., “Enhancement of External Forced Convection by Ionic Wind,” International Journal of Heat and Mass Transfer, Vol. 51, Nos. 25–26, 2008, pp. 6047–6053. doi: IJHMAK 0017-9310 CrossrefGoogle Scholar

  • [13] Ganan-Calvo A., Davila J. and Barrero A., “Current and Droplet Size in the Electrospraying of Liquids. Scaling Laws,” Journal of Aerosol Science, Vol. 28, No. 2, 1997, pp. 249–275. doi: JALSB7 0021-8502 CrossrefGoogle Scholar

  • [14] Moreau E., “Airflow Control by Non-Thermal Plasma Actuators,” Journal of Physics D: Applied Physics, Vol. 40, No. 3, 2007, pp. 605–636. doi: JPAPBE 0022-3727 CrossrefGoogle Scholar

  • [15] Benard N. and Moreau E., “Electrical and Mechanical Characteristics of Surface AC Dielectric Barrier Discharge Plasma Actuators Applied to Airflow Control,” Experiments in Fluids, Vol. 55, No. 11, 2014, Paper 1846. doi: EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [16] Benard N., Debien A. and Moreau E., “Time-Dependent Volume Force Produced by a Non-Thermal Plasma Actuator from Experimental Velocity Field,” Journal of Physics D: Applied Physics, Vol. 46, No. 24, 2013, Paper 245201. doi: JPAPBE 0022-3727 CrossrefGoogle Scholar

  • [17] Unfer T. and Boeuf J., “Modelling of a Nanosecond Surface Discharge Actuator,” Journal of Physics D: Applied Physics, Vol. 42, No. 19, 2009, Paper 194017. doi: JPAPBE 0022-3727 CrossrefGoogle Scholar

  • [18] Hagelaar G. J. M. and Pitchford L. C., “Solving the Boltzmann Equation to Obtain Electron Transport Coefficients and Rate Coefficients for Fluid Models,” Plasma Sources Science and Technology, Vol. 14, No. 4, 2005, pp. 722–733. doi: CrossrefGoogle Scholar

  • [19] Brown T. T., “A Method of an Apparatus or Machine for Producing Force and Motion,” G.B. Patent 300311, 1928. Google Scholar

  • [20] Brown T. T., “Electrokinetic Apparatus,” U.S. Patent 2,949,550, Aug. 1960. Google Scholar

  • [21] Christenson E. and Moller P., “Ion-Neutral Propulsion in Atmospheric Media,” AIAA Journal, Vol. 5, No. 10, 1967, pp. 1768–1773. doi: AIAJAH 0001-1452 LinkGoogle Scholar

  • [22] Wilson J., Perkins H. and Thompson W., “An Investigation of Ionic Wind Propulsion,” NASA TM-2009-215822, 2009. Google Scholar

  • [23] Pekker L. and Young M., “A Model of an Ideal Electrohydrodynamic Thruster,” Journal of Propulsion and Power, Vol. 27, No. 4, 2011, pp. 786–792. doi: JPPOEL 0748-4658 LinkGoogle Scholar

  • [24] Masuyama K. and Barrett S. R. H., “On the Performance of Electrohydrodynamic Propulsion,” Proceedings of the Royal Society A, Vol. 50, No. 6, 2013, pp. 1480–1486. Google Scholar

  • [25] Kiousis K. N., Moronis A. X. and Fruh W. G., “Electro-Hydrodynamic (EHD) Thrust Analysis in Wire–Cylinder Electrode Arrangement,” Plasma Science and Technology, Vol. 16, No. 4, 2014, pp. 363–369. doi: 1009-0630 CrossrefGoogle Scholar

  • [26] Moreau E., Benard N., Alicalapa F. and Douyère A., “Electrohydrodynamic Force Produced by a Corona Discharge Between a Wire Active Electrode and Several Cylinder Electrodes. Application to Electric Propulsion,” Journal of Electrostatics, Vol. 76, May 2015, pp. 194–200. doi: JOELDH 0304-3886 CrossrefGoogle Scholar

  • [27] Gilmore C. K. and Barrett S. R. H., “Electrohydrodynamic Thrust Density Using Positive Corona-Induced Ionic Winds for In-Atmosphere Propulsion,” Proceedings of the Royal Society A, Vol. 471, No. 2175, 2015, Paper 20140912. doi: CrossrefGoogle Scholar

  • [28] Grindley G. C., “The Mobility of Ions in Air—Part 1. Negative Ions in Moist Air,” Proceedings of the Royal Society A, Vol. 110, No. 754, 1925, pp. 341–358. Google Scholar

  • [29] Erikson H. A., “On the Nature of the Negative and Positive Ions in Air, Oxygen and Nitrogen,” Physical Review, Vol. 20, No. 2, 1922, pp. 117–126. doi: PHRVAO 0031-899X CrossrefGoogle Scholar

  • [30] Krylov E. V. and Nazarov E. G., “Electric Field Dependence of the Ion Mobility,” International Journal of Mass Spectrometry, Vol. 285, No. 3, 2009, pp. 149–156. doi: IMSPF8 1387-3806 CrossrefGoogle Scholar

  • [31] Sigmond R. S., “Simple Approximate Treatment of Unipolar Space-Charge-Dominated Coronas: The Warburg Law and the Saturation Current,” Journal of Applied Physics, Vol. 53, No. 2, 1982, pp. 891–898. doi: JAPIAU 0021-8979 CrossrefGoogle Scholar

  • [32] Stuetzer O. M., “Magnetohydrodynamics and Electrohydrodynamics,” Physics of Fluids, Vol. 5, No. 5, 1962, pp. 534–544. doi: CrossrefGoogle Scholar

  • [33] Kim C., Noh K. C., Hyun J., Lee S. G., Hwang J. and Hong H., “Microscopic Energy Conversion Process in the Ion Drift Region of Electrohydrodynamic Flow,” Applied Physics Letters, Vol. 100, No. 24, 2012, Paper 243906. APPLAB 0003-6951 CrossrefGoogle Scholar

  • [34] Townsend J. S., Electricity in Gases, Oxford Univ. Press, 1915, pp. 370–380. Google Scholar

  • [35] Roth J., Industrial Plasma Engineering, Principles, Vol. 1, Inst. of Physics, London, 1995, pp. 256–275. CrossrefGoogle Scholar

  • [36] Li S. and Uhm H., “Investigation of Electrical Breakdown Characteristics in the Electrodes of Cylindrical Geometry,” Physics of Plasmas, Vol. 11, No. 6, 2004, pp. 3088–3095. doi: PHPAEN 1070-664X CrossrefGoogle Scholar

  • [37] Ponta F. L. and Aref H., “Strouhal-Reynolds Number Relationship for Vortex Streets,” Physical Review Letters, Vol. 93, No. 8, 2004, pp. 1–4. doi: PRLTAO 0031-9007 CrossrefGoogle Scholar

  • [38] Stearns R. G., “Ion Mobility Measurements in a Positive Corona Discharge,” Journal of Applied Physics, Vol. 67, No. 6, 1990, pp. 2789–2799. doi: JAPIAU 0021-8979 CrossrefGoogle Scholar