Skip to main content
Skip to article control options
No AccessRegular Article

Greedy Nonintrusive Reduced Order Model for Fluid Dynamics

Published Online:

A greedy nonintrusive reduced order method (ROM) is proposed for parameterized time-dependent problems with an emphasis on problems in fluid dynamics. The nonintrusive ROM (NIROM) bases on a two-level proper orthogonal decomposition to extract temporal and spatial reduced basis from a set of candidates, and adopts the radial basis function to approximate undetermined coefficients of extracted reduced basis. Instead of adopting uniform or random sampling strategies, the candidates are determined by an adaptive greedy approach to minimize the overall offline computational cost. Numerical studies are presented for a two-dimensional diffusion problem as well as a lid-driven cavity problem governed by incompressible Navier–Stokes equations. The results demonstrate that the greedy nonintrusive ROM (GNIROM) predicts the flow field accurately and efficiently.


  • [1] Sirovich L., “Turbulence and the Dynamics of Coherent Structures,” Quarterly of Applied Mathematics, Vol. 45, No. 3, 1987, pp. 561–571. doi: QAMAAY 0033-569X CrossrefGoogle Scholar

  • [2] Hall K. C., “Eigenanalysis of Unsteady Flows About Airfoils, Cascades and Wings,” AIAA Journal, Vol. 32, No. 12, 1994, pp. 2426–2432. doi: AIAJAH 0001-1452 LinkGoogle Scholar

  • [3] Lumley J. L., “The Structure of Inhomogeneous Turbulence,” Proceedings of the International Colloquium on the Fine Scale Structure of the Atmosphere and its Influence on Radio Wave Propagation, Nauka, Moscow, 1967, pp. 166–178. Google Scholar

  • [4] Hall K. C., Thomas J. P. and Clark W. S., “Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique,” AIAA Journal, Vol. 40, No. 5, 2002, pp. 879–886. doi: AIAJAH 0001-1452 LinkGoogle Scholar

  • [5] Silva W. A., “Discrete-Time Linear and Nonlinear Aerodynamic Impulse Responses for Efficient CFD Analyses,” Ph.D. Dissertation, The College of William and Mary, AAI9820443, 1997. Google Scholar

  • [6] Deaner A. E. and Kevrekidis G. E., “Low-Dimensional Models for Complex Geometry Flows: Application to Grooved Channels and Circular Cylinders,” Physics of Fluid Dynamics, Vol. 3, No. 10, 1991, pp. 2337–2354. doi: CrossrefGoogle Scholar

  • [7] Xiao D., Fang F., Buchan A. G., Pain C. C., Navon I. M. and Muggeridge A., “Non-Intrusive Reduced Order Modelling of the Navier–Stokes Equations,” Computer Methods in Applied Mechanics and Engineering, Vol. 293, Aug. 2015, pp. 522–541. doi: CMMECC 0045-7825 CrossrefGoogle Scholar

  • [8] Casenave F., Ern A. and Lelièvre T., “A Nonintrusive Reduced Basis Method Applied to Aeroacoustic Simulations,” Advances in Computational Mathematics, Vol. 41, No. 5, 2015, pp. 961–986. doi: ACMHEX 1019-7168 CrossrefGoogle Scholar

  • [9] Barrault M. Y., Maday Y., Nguyen N. C. and Patera A. T., “An ‘Empirical Interpolation’ Method: Application to Efficient Reduced-Basis Discretization of Partial Differential Equations,” Comptes Rendus Mathematique, Vol. 339, No. 9, 2004, pp. 667–672. doi: CrossrefGoogle Scholar

  • [10] Zimmermann R. and Gortz S., “Improved Extrapolation of Steady Turbulent Aerodynamics Using a Non-Linear Pod-Based Reduced Order Model,” The Aeronautical Journal, Vol. 116, No. 1184, 2012, pp. 1079–1100. doi: AENJAK 0001-9240 CrossrefGoogle Scholar

  • [11] Walton S., Hassan O. and Morgan K., “Reduced Order Modelling for Unsteady Fluid Flow Using Proper Orthogonal Decomposition and Radial Basis Functions,” Applied Mathematical Modelling, Vol. 37, No. 20, 2013, pp. 8930–8945. doi: AMMODL 0307-904X CrossrefGoogle Scholar

  • [12] Xiao D., Fang F. and Pain C., “Non-Intrusive Reduced-Order Modelling of the Navier–Stokes Equations Based on rbf Interpolation,” International Journal for Numerical Methods in Fluids, Vol. 79, No. 11, 2015, pp. 580–595. doi: IJNFDW 0271-2091 CrossrefGoogle Scholar

  • [13] Audouze C., De Vuyst F. and Nair P. B., “Nonintrusive Reduced-Order Modeling of Parametrized Time-Dependent Partial Differential Equations,” Numerical Methods for Partial Differential Equations, Vol. 29, No. 5, 2013, pp. 1587–1628. doi: NMPDEB 1098-2426 CrossrefGoogle Scholar

  • [14] Fornberg B. and Flyer N., “Accuracy of Radial Basis Function Interpolation and Derivative Approximation on 1-D Infinite Grids,” Advances in Computational Mathematics, Vol. 23, Nos. 1–2, 2005, pp. 5–20. doi: ACMHEX 1019-7168 CrossrefGoogle Scholar

  • [15] Nguyen N. C. and Peraire J., “An Efficient Reduced-Order Modeling Approach for Non-Linear Parametrized Partial Differential Equations,” International Journal for Numerical Methods in Engineering, Vol. 76, No. 1, 2008, pp. 27–55. doi: IJNMBH 0029-5981 CrossrefGoogle Scholar

  • [16] Knezevic D. J., Nguyen N. C. and Patera A. T., “Reduced Basis Approximation and a Posteriori Error Estimation for the Parametrized Unsteady Boussinesq Equations,” Mathematical Models and Methods in Applied Sciences, Vol. 21, No. 07, 2011, pp. 1415–1442. doi: MMMSEU 0218-2025 CrossrefGoogle Scholar

  • [17] Noack B. R., Afanasiev K., Morzynski M. and Tadmor G., “A Hierarchy of Low-Dimensional Models for the Transient and Post-Transient Cylinder Wake,” Journal of Fluid Mechanics, Vol. 497, No. 497, 2003, pp. 335–363. doi: JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [18] Qawasmeh B. R. and Wei M., “Low-Dimensional Models for Compressible Temporally Developing Shear Layers,” Journal of Fluid Mechanics, Vol. 731, No. 731, 2013, pp. 364–393. doi: JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [19] Ballarin F., Faggiano E. and Ippolito S., “Fast Simulations of Patient-Specific Haemodynamics of Coronary Artery Bypass Grafts Based on a Pod–Galerkin Method and a Vascular Shape Parametrization,” Journal of Computational Physics, Vol. 315, June 2016, pp. 609–628. doi: JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [20] Chaturantabut S. and Sorensen D. C., “Discrete Empirical Interpolation for Nonlinear Model Reduction,” Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held Jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009, IEEE Paper  CDC.2009.5400045, Shanghai, China, Dec. 2009, pp. 4316–4321.doi: Google Scholar

  • [21] Xiao D., Fang F., Pain C. and Navon I. M., “A Parameterized Non-Intrusive Reduced Order Model and Error Analysis for General Time-Dependent Nonlinear Partial Differential Equations and its Applications,” Computer Methods in Applied Mechanics and Engineering, Vol. 317, April 2017, pp. 868–889. doi: CMMECC 0045-7825 CrossrefGoogle Scholar

  • [22] Sobol’ I. M., “On the Systematic Search in a Hypercube,” SIAM Journal on Numerical Analysis, Vol. 16, No. 5, 1979, pp. 790–793. doi: SJNAEQ 0036-1429 CrossrefGoogle Scholar

  • [23] Du Q., Faber V. and Gunzburger M., “Centroidal Voronoi Tessellations: Applications and Algorithms,” SIAM Review, Vol. 41, No. 4, 1999, pp. 637–676. doi: SIREAD 0036-1445 CrossrefGoogle Scholar

  • [24] Romero V. J., Burkardt J. S., Gunzburger M. D. and Peterson J. S., “Initial Evaluation of Pure and “Latinized” Centroidal Voronoi Tessellation for Non-Uniform Statistical Sampling,” Sensitivity Analysis of Model Output, Los Alamos National Lab., 2005, pp. 380–401, Google Scholar

  • [25] Ahmadpoor M., Notghi B. and Brigham J. C., “A Generalized Iterative Approach to Improve Reduced-Order Model Accuracy for Inverse Problem Applications,” Journal of Engineering Mechanics, Vol. 142, No. 5, 2016, Paper 04016020. doi: JENMDT 0733-9399 CrossrefGoogle Scholar

  • [26] Haasdonk B. and Ohlberger M., “Reduced Basis Method for Finite Volume Approximations of Parametrized Linear Evolution Equations,” ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 42, No. 2, 2008, pp. 277–302. doi: CrossrefGoogle Scholar

  • [27] Haasdonk B., “Convergence Rates of the Pod–Greedy Method,” ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 47, No. 3, 2013, pp. 859–873. doi: CrossrefGoogle Scholar

  • [28] Buffa A., Maday Y., Patera A. T., Prud’homme C. and Turinici G., “A Priori Convergence of the Greedy Algorithm for the Parametrized Reduced Basis Method,” ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 46, No. 3, 2012, pp. 595–603. doi: CrossrefGoogle Scholar

  • [29] Binev P., Cohen A., Dahmen W., De Vore R., Petrova G. and Wojtaszczyk P., “Convergence Rates for Greedy Algorithms in Reduced Basis Methods,” SIAM Journal on Mathematical Analysis, Vol. 43, No. 3, 2011, pp. 1457–1472. doi: SJMAAH 0036-1410 CrossrefGoogle Scholar

  • [30] Veroy K. and Patera A. T., “Certified Real-Time Solution of the Parametrized Steady Incompressible Navier–Stokes Equations: Rigorous Reduced-Basis a Posteriori Error Bounds,” International Journal for Numerical Methods in Fluids, Vol. 47, Nos. 8–9, 2005, pp. 773–788. doi: IJNFDW 0271-2091 CrossrefGoogle Scholar

  • [31] Veroy K., Prud’homme C., Rovas D. and Patera A. T., “A Posteriori Error Bounds for Reduced-Basis Approximation of Parameter and Nonlinear Elliptic Partial Differential Equations,” AIAA Paper 2003-3847, June 2003, pp. 3847–3864.doi: Google Scholar

  • [32] Rozza G., Huynh D. B. P. and Patera A. T., “Reduced Basis Approximation and a Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations,” Archives of Computational Methods in Engineering, Vol. 15, No. 3, 2008, pp. 229–275. doi: CrossrefGoogle Scholar

  • [33] Grepl M. A., “Certified Reduced Basis Methods for Nonaffine Linear Time-Varying and Nonlinear Parabolic Partial Differential Equations,” Mathematical Models and Methods in Applied Sciences, Vol. 22, No. 03, 2012, Paper 1150015. doi: MMMSEU 0218-2025 CrossrefGoogle Scholar

  • [34] Sasena M., Parkinson M., Goovaerts P., Papalambros P. and Reed M., “Adaptive Experimental Design Applied to Ergonomics Testing Procedure,” American Soc. of Mechanical Engineers Paper DETC2002/DAC-34091, New York, Sept. 2002, pp. 529–537.doi: CrossrefGoogle Scholar

  • [35] Bui-Thanh T., Willcox K. and Ghattas O., “Parametric Reduced-Order Models for Probabilistic Analysis of Unsteady Aerodynamic Applications,” AIAA Journal, Vol. 46, No. 10, 2008, pp. 2520–2529. doi: AIAJAH 0001-1452 LinkGoogle Scholar

  • [36] Fornberg B., Larsson E. and Flyer N., “Stable Computations with Gaussian Radial Basis Functions,” SIAM Journal on Scientific Computing, Vol. 33, No. 2, 2011, pp. 869–892. doi: SJOCE3 1064-8275 CrossrefGoogle Scholar

  • [37] Aubry N., Guyonnet R. and Lima R., “Spatiotemporal Analysis of Complex Signals: Theory and Applications,” Journal of Statistical Physics, Vol. 64, No. 3, 1991, pp. 683–739. doi: JSTPBS 0022-4715 CrossrefGoogle Scholar

  • [38] Karhunen K., “Zur spektraltheorie stochastischer prozesse,” Annales Academiae Scientiarum Fennicae, AI 34, 1946. Google Scholar

  • [39] Kaufman L., “Maximum Likelihood, Least Squares, and Penalized Least Squares for Pet,” IEEE Transactions on Medical Imaging, Vol. 12, No. 2, 1993, pp. 200–214. doi: ITMID4 0278-0062 CrossrefGoogle Scholar

  • [40] Nowlan S. J., “Maximum Likelihood Competitive Learning,” Advances in Neural Information Processing Systems 2, edited by Touretzky D. S., Morgan Kaufmann Publ., San Francisco, CA, 1990, pp. 574–582. Google Scholar

  • [41] Thacher H. C., “Conversion of a Power to a Series of Chebyshev Polynomials,” Communications of the ACM, Vol. 7, No. 3, 1964, pp. 181–182. doi: CACMA2 0001-0782 CrossrefGoogle Scholar

  • [42] Ghia U., Ghia K. N. and Shin C. T., “High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method,” Journal of Computational Physics, Vol. 48, No. 3, 1982, pp. 387–411. doi: JCTPAH 0021-9991 CrossrefGoogle Scholar