Skip to main content
Skip to article control options
No AccessRegular Article

Global Sensitivity Analysis and Estimation of Model Error, Toward Uncertainty Quantification in Scramjet Computations

Published Online:https://doi.org/10.2514/1.J056278

The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress toward optimal engine designs requires accurate flow simulations together with uncertainty quantification. However, performing uncertainty quantification for scramjet simulations is challenging due to the large number of uncertain parameters involved and the high computational cost of flow simulations. These difficulties are addressed in this paper by developing practical uncertainty quantification algorithms and computational methods, and deploying them in the current study to large-eddy simulations of a jet in crossflow inside a simplified HIFiRE Direct Connect Rig scramjet combustor. First, global sensitivity analysis is conducted to identify influential uncertain input parameters, which can help reduce the system’s stochastic dimension. Second, because models of different fidelity are used in the overall uncertainty quantification assessment, a framework for quantifying and propagating the uncertainty due to model error is presented. These methods are demonstrated on a nonreacting jet-in-crossflow test problem in a simplified scramjet geometry, with parameter space up to 24 dimensions, using static and dynamic treatments of the turbulence subgrid model, and with two-dimensional and three-dimensional geometries.

References

  • [1] Schmisseur J. D., “Hypersonics into the 21st Century: A Perspective on AFOSR-Sponsored Research in Aerothermodynamics,” Progress in Aerospace Sciences, Vol. 72, Jan. 2015, pp. 3–16. doi:https://doi.org/10.1016/j.paerosci.2014.09.009 PAESD6 0376-0421 CrossrefGoogle Scholar

  • [2] Witteveen J., Duraisamy K. and Iaccarino G., “Uncertainty Quantification and Error Estimation in Scramjet Simulation,” 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2011-2283, April 2011. doi:https://doi.org/10.2514/6.2011-2283 LinkGoogle Scholar

  • [3] Constantine P. G., Emory M., Larsson J. and Iaccarino G., “Exploiting Active Subspaces to Quantify Uncertainty in the Numerical Simulation of the HyShot II Scramjet,” Journal of Computational Physics, Vol. 302, Dec. 2015, pp. 1–20. doi:https://doi.org/10.1016/j.jcp.2015.09.001 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [4] Dolvin D. J., “Hypersonic International Flight Research and Experimentation (HIFiRE),” 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2008-2581, April–May 2008. doi:https://doi.org/10.2514/6.2008-2581 LinkGoogle Scholar

  • [5] Dolvin D. J., “Hypersonic International Flight Research and Experimentation,” 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conf, AIAA Paper 2009-7228, 2009. doi:https://doi.org/10.2514/6.2009-7228 LinkGoogle Scholar

  • [6] Jackson K. R., Gruber M. R. and Barhorst T. F., “The HIFiRE Flight 2 Experiment: An Overview and Status Update,” 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2009-5029, Aug. 2009. doi:https://doi.org/10.2514/6.2009-5029 LinkGoogle Scholar

  • [7] Jackson K. R., Gruber M. R. and Buccellato S., “HIFiRE Flight 2 Overview and Status Update 2011,” 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2011-2202, April 2011. doi:https://doi.org/10.2514/6.2011-2202 LinkGoogle Scholar

  • [8] Gruber M. R., Jackson K. and Liu J., “Hydrocarbon-Fueled Scramjet Combustor Flowpath Development for Mach 6-8 HIFiRE Flight Experiments,” U.S. Air Force Research Lab., TR AFRL-RZ-WP-TP-2010-2243, Wright-Patterson AFB, OH, 2008. Google Scholar

  • [9] Ferlemann P. G., “Forebody and Inlet Design for the HIFiRE 2 Flight Test,” Proceedings of the JANNAF Airbreathing Propulsion Subcommittee Meeting, ATK Space, Boston, 2008, Paper 20080020517, https://ntrs.nasa.gov/search.jsp?R=20080020517. Google Scholar

  • [10] Gruber M. R., Ferlemann P. and McDaniel K., “HIFiRE Flight 2 Flowpath Design Update,” U.S. Air Force Research Lab., TR AFRL-RZ-WP-TP-2010-2247, Wright-Patterson AFB, OH, 2009. Google Scholar

  • [11] Hass N. E., Cabell K. F. and Storch A. M., “HIFiRE Direct-Connect Rig (HDCR) Phase I Ground Test Results from the NASA Langley Arc-Heated Scramjet Test Facility,” NASA TR LF99-8888, 2010. Google Scholar

  • [12] Storch A. M., Bynum M., Liu J. and Gruber M., “Combustor Operability and Performance Verification for HIFiRE Flight 2,” 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2011-2249, April 2011. doi:https://doi.org/10.2514/6.2011-2249 LinkGoogle Scholar

  • [13] Lacaze G., Vane Z. P. and Oefelein J. C., “Large Eddy Simulation of the HIFiRE Direct Connect Rig Scramjet Combustor,” 55th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2017-0142, 2017. doi:https://doi.org/10.2514/6.2017-0142 LinkGoogle Scholar

  • [14] Oefelein J. C., “Large Eddy Simulation of Turbulent Combustion Processes in Propulsion and Power Systems,” Progress in Aerospace Sciences, Vol. 42, No. 1, 2006, pp. 2–37. doi:https://doi.org/10.1016/j.paerosci.2006.02.001 PAESD6 0376-0421 CrossrefGoogle Scholar

  • [15] Oefelein J. C., “Simulation and Analysis of Turbulent Multiphase Combustion Processes at High Pressures,” Ph.D. Thesis, Pennsylvania State Univ., University Park, PA, May 1997. Google Scholar

  • [16] Oefelein J. C., Schefer R. W. and Barlow R. S., “Toward Validation of Large Eddy Simulation for Turbulent Combustion,” AIAA Journal, Vol. 44, No. 3, 2006, pp. 418–433. doi:https://doi.org/10.2514/1.16425 AIAJAH 0001-1452 LinkGoogle Scholar

  • [17] Oefelein J. C., Sankaran V. and Drozda T. G., “Large Eddy Simulation of Swirling Particle-Laden Flow in a Model Axisymmetric Combustor,” Proceedings of the Combustion Institute, Vol. 31, No. 2, 2007, pp. 2291–2299. doi:https://doi.org/10.1016/j.proci.2006.08.017 CrossrefGoogle Scholar

  • [18] Oefelein J. C., Dahms R. and Lacaze G., “Detailed Modeling and Simulation of High-Pressure Fuel Injection Processes in Diesel Engines,” SAE International Journal of Engines, Vol. 5, No. 3, 2012, pp. 1410–1419. doi:https://doi.org/10.4271/2012-01-1258 CrossrefGoogle Scholar

  • [19] Oefelein J. C., “Large Eddy Simulation of Complex Thermophysics in Advanced Propulsion and Power Systems,” Proceedings of the 8th U.S. National Combustion Meeting, Western States Section/Combustion Inst., Livermore, CA, 2013, pp. 3041–3057. Google Scholar

  • [20] Oefelein J. C., Lacaze G., Dahms R., Ruiz A. and Misdariis A., “Effects of Real-Fluid Thermodynamics on High-Pressure Fuel Injection Processes,” SAE International Journal of Engines, Vol. 7, No. 3, 2014, pp. 1125–1136. doi:https://doi.org/10.4271/2014-01-1429 CrossrefGoogle Scholar

  • [21] Williams T. C., Schefer R. W., Oefelein J. C. and Shaddix C. R., “Idealized Gas Turbine Combustor for Performance Research and Validation of Large Eddy Simulations,” Review of Scientific Instruments, Vol. 78, No. 3, 2007, Paper 035114. doi:https://doi.org/10.1063/1.2712936 RSINAK 0034-6748 CrossrefGoogle Scholar

  • [22] Lacaze G., Misdariis A., Ruiz A. and Oefelein J. C., “Analysis of High-Pressure Diesel Fuel Injection Processes Using LES with Real-Fluid Thermodynamics and Transport,” Proceedings of the Combustion Institute, Vol. 35, No. 2, 2015, pp. 1603–1611. doi:https://doi.org/10.1016/j.proci.2014.06.072. CrossrefGoogle Scholar

  • [23] Khalil M., Lacaze G., Oefelein J. C. and Najm H. N., “Uncertainty Quantification in LES of a Turbulent Bluff-Body Stabilized Flame,” Proceedings of the Combustion Institute, Vol. 35, No. 2, 2015, pp. 1147–1156. doi:https://doi.org/10.1016/j.proci.2014.05.030 Google Scholar

  • [24] Saltelli A., Tarantola S., Campolongo F. and Ratto M., Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, Wiley, Chichester, England, U.K., 2004. Google Scholar

  • [25] Saltelli A., Ratto M., Andres T., Campolongo F., Cariboni J., Gatelli D., Saisana M. and Tarantola S., Global Sensitivity Analysis: The Primer, Wiley, Chichester, England, U.K., 2008. Google Scholar

  • [26] Sobol I. M., “Theorems and Examples on High Dimensional Model Representation,” Reliability Engineering & System Safety, Vol. 79, No. 2, 2003, pp. 187–193. doi:https://doi.org/10.1016/S0951-8320(02)00229-6 CrossrefGoogle Scholar

  • [27] Sobol I. M., “On Sensitivity Estimation for Nonlinear Mathematical Models,” Matematicheskoe Modelirovanie, Vol. 2, No. 1, 1990, pp. 112–118. Google Scholar

  • [28] Jansen M. J. W., “Analysis of Variance Designs for Model Output,” Computer Physics Communications, Vol. 117, No. 1, 1999, pp. 35–43. doi:https://doi.org/10.1016/S0010-4655(98)00154-4 CPHCBZ 0010-4655 CrossrefGoogle Scholar

  • [29] Saltelli A., Tarantola S. and Chan K. P.-S., “A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output,” Technometrics, Vol. 41, No. 1, 1999, pp. 39–56. doi:https://doi.org/10.1080/00401706.1999.10485594 TCMTA2 0040-1706 CrossrefGoogle Scholar

  • [30] Saltelli A., “Making Best Use of Model Evaluations to Compute Sensitivity Indices,” Computer Physics Communications, Vol. 145, No. 2, 2002, pp. 280–297. doi:https://doi.org/10.1016/S0010-4655(02)00280-1 CPHCBZ 0010-4655 CrossrefGoogle Scholar

  • [31] Saltelli A., Annoni P., Azzini I., Campolongo F., Ratto M. and Tarantola S., “Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the Total Sensitivity Index,” Computer Physics Communications, Vol. 181, No. 2, 2010, pp. 259–270. doi:https://doi.org/10.1016/j.cpc.2009.09.018 CPHCBZ 0010-4655 CrossrefGoogle Scholar

  • [32] Giles M. B., “Multilevel Monte Carlo Path Simulation,” Operations Research, Vol. 56, No. 3, 2008, pp. 607–617. doi:https://doi.org/10.1287/opre.1070.0496 OPREAI 0030-364X CrossrefGoogle Scholar

  • [33] Ng L. W. T. and Eldred M., “Multifidelity Uncertainty Quantification Using Non-Intrusive Polynomial Chaos and Stochastic Collocation,” 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper 2012-1852, April 2012. doi:https://doi.org/10.2514/6.2012-1852 LinkGoogle Scholar

  • [34] Eldred M. S., Ng L. W. T., Barone M. F. and Domino S. P., “Multifidelity Uncertainty Quantification Using Spectral Stochastic Discrepancy Models,” Handbook of Uncertainty Quantification, Springer International, Cham, Switzerland, 2015, pp. 1–45. doi:https://doi.org/10.1007/978-3-319-11259-6_25-1 CrossrefGoogle Scholar

  • [35] Peherstorfer B., Willcox K. and Gunzburger M., “Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization,” Massachusetts Inst. of Technology, Aerospace Computational Design Lab., TR16-1, Cambridge, MA, 2016. Google Scholar

  • [36] Geraci G., Eldred M. S. and Iaccarino G., “A Multifidelity Control Variate Approach for the Multilevel Monte Carlo Technique,” Center for Turbulence Research Annual Research Briefs, Stanford Univ., Stanford, CA, 2015, pp. 169–181. Google Scholar

  • [37] Geraci G., Eldred M. S. and Iaccarino G., “A Multifidelity Multilevel Monte Carlo Method for Uncertainty Propagation in Aerospace Applications,” 19th AIAA Non-Deterministic Approaches Conference, AIAA Paper 2017-1951, 2017. doi:https://doi.org/10.2514/6.2017-1951 LinkGoogle Scholar

  • [38] Ghanem R. G. and Spanos P. D., Stochastic Finite Elements: A Spectral Approach, 1st ed., Springer, New York, 1991. CrossrefGoogle Scholar

  • [39] Najm H. N., “Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics,” Annual Review of Fluid Mechanics, Vol. 41, No. 1, 2009, pp. 35–52. doi:https://doi.org/10.1146/annurev.fluid.010908.165248 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [40] Xiu D., “Fast Numerical Methods for Stochastic Computations: A Review,” Communications in Computational Physics, Vol. 5, Nos. 2–4, 2009, pp. 242–272. 1815-2406 Google Scholar

  • [41] Le Maître O. P. and Knio O. M., Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics, Springer, Houten, The Netherlands, 2010. CrossrefGoogle Scholar

  • [42] Ernst O. G., Mugler A., Starkloff H.-J. and Ullmann E., “On the Convergence of Generalized Polynomial Chaos Expansions,” ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 46, No. 2, 2012, pp. 317–339. doi:https://doi.org/10.1051/m2an/2011045 CrossrefGoogle Scholar

  • [43] Xiu D. and Karniadakis G. E., “The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations,” SIAM Journal on Scientific Computing, Vol. 24, No. 2, 2002, pp. 619–644. doi:https://doi.org/10.1137/S1064827501387826 SJOCE3 1064-8275 CrossrefGoogle Scholar

  • [44] Candès E. J., Romberg J. and Tao T., “Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information,” IEEE Transactions on Information Theory, Vol. 52, No. 2, 2006, pp. 489–509. doi:https://doi.org/10.1109/TIT.2005.862083 IETTAW 0018-9448 CrossrefGoogle Scholar

  • [45] Donoho D. L., “Compressed Sensing,” IEEE Transactions on Information Theory, Vol. 52, No. 4, 2006, pp. 1289–1306. doi:https://doi.org/10.1109/TIT.2006.871582 IETTAW 0018-9448 CrossrefGoogle Scholar

  • [46] Barthelmann V., Novak E. and Ritter K., “High Dimensional Polynomial Interpolation on Sparse Grids,” Advances in Computational Mathematics, Vol. 12, No. 4, 2000, pp. 273–288. doi:https://doi.org/10.1023/A:1018977404843 ACMHEX 1019-7168 CrossrefGoogle Scholar

  • [47] Gerstner T. and Griebel M., “Numerical Integration Using Sparse Grids,” Numerical Algorithms, Vol. 18, Nos. 3–4, 1998, pp. 209–232. doi:https://doi.org/10.1023/A:1019129717644 NUALEG 1017-1398 CrossrefGoogle Scholar

  • [48] Gerstner T. and Griebel M., “Dimension-Adaptive Tensor-Product Quadrature,” Computing, Vol. 71, No. 1, 2003, pp. 65–87. doi:https://doi.org/10.1007/s00607-003-0015-5 CrossrefGoogle Scholar

  • [49] Rauhut H. and Ward R., “Sparse Legendre Expansions via 1-Minimization,” Journal of Approximation Theory, Vol. 164, No. 5, 2012, pp. 517–533. doi:https://doi.org/10.1016/j.jat.2012.01.008 JAXTAZ 0021-9045 CrossrefGoogle Scholar

  • [50] Hampton J. and Doostan A., “Compressive Sampling of Polynomial Chaos Expansions: Convergence Analysis and Sampling Strategies,” Journal of Computational Physics, Vol. 280, Jan. 2015, pp. 363–386. doi:https://doi.org/10.1016/j.jcp.2014.09.019 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [51] Fajraoui N., Marelli S. and Sudret B., “On Optimal Experimental Designs for Sparse Polynomial Chaos Expansions,” ETH Zurich TR RSUQ-2017-001, Zurich, Switzerland, 2017. Google Scholar

  • [52] Peng J., Hampton J. and Doostan A., “A Weighted 1-Minimization Approach for Sparse Polynomial Chaos Expansions,” Journal of Computational Physics, Vol. 267, June 2014, pp. 92–111. doi:https://doi.org/10.1016/j.jcp.2014.02.024 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [53] Sargsyan K., Safta C., Najm H. N., Debusschere B. J., Ricciuto D. and Thornton P., “Dimensionality Reduction for Complex Models via Bayesian Compressive Sensing,” International Journal for Uncertainty Quantification, Vol. 4, No. 1, 2014, pp. 63–93. doi:https://doi.org/10.1615/Int.J.UncertaintyQuantification.v4.i1 CrossrefGoogle Scholar

  • [54] Jakeman J. D., Eldred M. S. and Sargsyan K., “Enhancing 1-Minimization Estimates of Polynomial Chaos Expansions Using Basis Selection,” Journal of Computational Physics, Vol. 289, May 2015, pp. 18–34. doi:https://doi.org/10.1016/j.jcp.2015.02.025 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [55] Huan X., Safta C., Sargsyan K., Vane Z. P., Lacaze G., Oefelein J. C. and Najm H. N., “Compressive Sensing with Cross-Validation and Stop-Sampling for Sparse Polynomial Chaos Expansions,” SIAM/ASA Journal on Uncertainty Quantification, arXiv preprint: 1707.09334, 2017 (submitted for publication). Google Scholar

  • [56] Natarajan B. K., “Sparse Approximate Solutions to Linear Systems,” SIAM Journal on Computing, Vol. 24, No. 2, 1995, pp. 227–234. doi:https://doi.org/10.1137/S0097539792240406 SMJCAT 0097-5397 CrossrefGoogle Scholar

  • [57] Donoho D. L., “For Most Large Underdetermined Systems of Linear Equations the Minimal 1-Norm Solution is also the Sparsest Solution,” Communications on Pure and Applied Mathematics, Vol. 59, No. 6, 2006, pp. 797–829. doi:https://doi.org/10.1002/(ISSN)1097-0312 CPMAMV 0010-3640 CrossrefGoogle Scholar

  • [58] Figueiredo M. A. T., Nowak R. D. and Wright S. J., “Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems,” IEEE Journal of Selected Topics in Signal Processing, Vol. 1, No. 4, 2007, pp. 586–597. doi:https://doi.org/10.1109/JSTSP.2007.910281 CrossrefGoogle Scholar

  • [59] Figueiredo M. A. T., Nowak R. D. and Wright S. J., “GPSR: Gradient Projection for Sparse Reconstruction,” 2009, http://www.lx.it.pt/∼mtf/GPSR [retrieved May 2017]. Google Scholar

  • [60] Hastie T., Tibshirani R. and Friedman J., The Elements of Statistical Learning, 2nd ed., Springer, New York, 2009, pp. 241–269. CrossrefGoogle Scholar

  • [61] Kennedy M. C. and O’Hagan A., “Bayesian Calibration of Computer Models,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), Vol. 63, No. 3, 2001, pp. 425–464. doi:https://doi.org/10.1111/rssb.2001.63.issue-3 CrossrefGoogle Scholar

  • [62] Sargsyan K., Najm H. N. and Ghanem R. G., “On the Statistical Calibration of Physical Models,” International Journal of Chemical Kinetics, Vol. 47, No. 4, 2015, pp. 246–276. doi:https://doi.org/10.1002/kin.20906 IJCKBO 0538-8066 CrossrefGoogle Scholar

  • [63] Oliver T. A., Terejanu G., Simmons C. S. and Moser R. D., “Validating Predictions of Unobserved Quantities,” Computer Methods in Applied Mechanics and Engineering, Vol. 283, Jan. 2015, pp. 1310–1335. doi:https://doi.org/10.1016/j.cma.2014.08.023 CMMECC 0045-7825 CrossrefGoogle Scholar

  • [64] Gilks W. R., Richardson S. and Spiegelhalter D. J., Markov Chain Monte Carlo in Practice, Chapman and Hall, New York, 1996. CrossrefGoogle Scholar

  • [65] Roberts G. O., “General State Space Markov Chains and MCMC Algorithms,” Probability Surveys, Vol. 1, 2004, pp. 20–71. doi:https://doi.org/10.1214/154957804100000024 1549-5787 CrossrefGoogle Scholar

  • [66] Haario H., Saksman E. and Tamminen J., “An Adaptive Metropolis Algorithm,” Bernoulli, Vol. 7, No. 2, 2001, pp. 223–242. CrossrefGoogle Scholar

  • [67] Christensen R., Plane Answers to Complex Questions: The Theory of Linear Models, 4th ed., Springer–Verlag, New York, 2011, pp. 370–373. CrossrefGoogle Scholar