Skip to main content
Skip to article control options
No AccessRegular Article

Effect of Nozzle–Plate Distance on Acoustic Phenomena from Supersonic Impinging Jet

Published Online:https://doi.org/10.2514/1.J056504

For an adequate understanding of the broadband acoustic phenomena generated by a rocket exhaust jet impinging on a flame deflector, this study experimentally clarifies the factors that cause the difference in the broadband acoustic field of a supersonic ideally expanded jet impinging on an inclined flat plate for various nozzle–plate distances. According to previous studies, there are two possible factors: the Mach waves, which are radiated from the free-jet region and reflected by the plate, and the acoustic waves generated in the impingement region. To distinguish the effects of these factors, this study compares the following three results: the overall sound pressure level distribution, images extracted from the schlieren visualization movies using acoustic-triggered conditional sampling, and tracing lines of the acoustic intensity vectors of the Mach waves. The results reveal that the nozzle–plate distance affects the fraction of the Mach waves that are generated in the free-jet region and reflected by the plate, resulting in a higher overall sound pressure level in the upstream direction for larger nozzle–plate distances. It is concluded that the location of the plate relative to the source region of the Mach waves significantly affects the acoustic phenomena, owing to the variation in the nozzle–plate distances.

References

  • [1] Henderson B., “The Connection Between Sound Production and Jet Structure of the Supersonic Impinging Jet,” Journal of the Acoustical Society of America, Vol. 111, No. 2, 2002, pp. 735–747. doi:https://doi.org/10.1121/1.1436069 CrossrefGoogle Scholar

  • [2] Henderson B., Bridges J. and Wernet M., “An Experimental Study of the Oscillatory Flow Structure of Tone-Producing Supersonic Impinging Jets,” Journal of Fluid Mechanics, Vol. 542, Nov. 2005, pp. 115–137. doi:https://doi.org/10.1017/S0022112005006385 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [3] Risborg A. and Soria J., “High-Speed Optical Measurements of an Underexpanded Supersonic Jet Impinging on an Inclined Plate,” Proceedings of the 28th International Congress on High-Speed Imaging and Photonics, International Soc. for Optics and Photonics Paper  71261F, Bellingham, WA, 2009. Google Scholar

  • [4] Dauptain A., Gicquel L. Y. M. and Moreau S., “Large Eddy Simulation of Supersonic Impinging Jets,” AIAA Journal, Vol. 50, No. 7, 2012, pp. 1560–1574. doi:https://doi.org/10.2514/1.J051470 AIAJAH 0001-1452 LinkGoogle Scholar

  • [5] Weightman J. L., Amili O., Honnery D., Soria J. and Edgington-Mitchell D., “An Explanation for the Phase Lag in Supersonic Jet Impingement,” Journal of Fluid Mechanics, Vol. 815, March 2017, p. R1. doi:https://doi.org/10.1017/jfm.2017.37 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [6] Gojon R. and Bogey C., “Flow Structure Oscillations and Tone Production in Underexpanded Impinging Round Jets,” AIAA Journal, Vol. 55, No. 6, 2017, pp. 1792–1805. doi:https://doi.org/10.2514/1.J055618 AIAJAH 0001-1452 LinkGoogle Scholar

  • [7] Uzun A., Kumar R., Hussaini M. Y. and Alvi F. S., “Simulation of Tonal Noise Generation by Supersonic Impinging Jets,” AIAA Journal, Vol. 51, No. 7, 2013, pp. 1593–1611. doi:https://doi.org/10.2514/1.J051839 AIAJAH 0001-1452 LinkGoogle Scholar

  • [8] Kumar R., Wiley A., Venkatakrishnan L. and Alvi F., “Role of Coherent Structures in Supersonic Impinging Jets,” Physics of Fluids, Vol. 25, No. 7, 2013, Paper 076101. doi:https://doi.org/10.1063/1.4811401 CrossrefGoogle Scholar

  • [9] Davis T., Edstrand A., Alvi F., Cattafesta L., Yorita D. and Asai K., “Investigation of Impinging Jet Resonant Modes Using Unsteady Pressure-Sensitive Paint Measurements,” Experiments in Fluids, Vol. 56, No. 5, 2015, p. 101. doi:https://doi.org/10.1007/s00348-015-1976-9 EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [10] Nonomura T., Goto Y. and Fujii K., “Aeroacoustic Waves Generated from a Supersonic Jet Impinging on an Inclined Flat Plate,” International Journal of Aeroacoustics, Vol. 10, No. 4, 2011, pp. 401–425. doi:https://doi.org/10.1260/1475-472X.10.4.401 CrossrefGoogle Scholar

  • [11] Tam C. K. W., “Mach Wave Radiation from High-Speed Jets,” AIAA Journal, Vol. 47, No. 10, 2009, pp. 2440–2448. doi:https://doi.org/10.2514/1.42644 AIAJAH 0001-1452 LinkGoogle Scholar

  • [12] Tsutsumi S., Takaki R., Nakanishi Y., Okamoto K. and Teramoto S., “Numerical Study on Acoustic Radiation from a Supersonic Jet Impinging to an Inclined Plate,” 17th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2011-2922, June 2011. LinkGoogle Scholar

  • [13] Tsutsumi S., Takaki R., Nakanishi Y., Okamoto K. and Teramoto S., “Acoustic Generation Mechanism of a Supersonic Jet Impinging on Deflectors,” 52nd AIAA Aerospace Sciences Meeting, AIAA Paper  2014-0882, Jan. 2014. LinkGoogle Scholar

  • [14] Brehm C., Housman J. A. and Kiris C. C., “Noise Generation Mechanisms for a Supersonic Jet Impinging on an Inclined Plate,” Journal of Fluid Mechanics, Vol. 797, June 2016, pp. 802–850. doi:https://doi.org/10.1017/jfm.2016.244 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [15] Nonomura T., Honda H., Nagata Y., Yamamoto M., Morizawa S., Obayashi S. and Fujii K., “Plate-Angle Effects on Acoustic Waves from Supersonic Jets Impinging on Inclined Plates,” AIAA Journal, Vol. 54, No. 3, 2016, pp. 816–827. doi:https://doi.org/10.2514/1.J054152 AIAJAH 0001-1452 LinkGoogle Scholar

  • [16] Worden T. J., Gustavsson J. P. R., Shih C. and Alvi F. S., “Acoustic Measurements of High-Temperature Supersonic Impinging Jets in Multiple Configurations,” 19th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2013-2187, May 2013. LinkGoogle Scholar

  • [17] Worden T. J., Shih C. and Alvi F. S., “Supersonic Jet Impingement on a Model-Scale Jet Blast Deflector,” AIAA Journal, Vol. 55, No. 8, 2017, pp. 2522–2536. doi:https://doi.org/10.2514/1.J055664 LinkGoogle Scholar

  • [18] Akamine M., Nakanishi Y., Okamoto K., Teramoto S., Okunuki T. and Tsutsumi S., “Acoustic Phenomena from Correctly Expanded Supersonic Jet Impinging on Inclined Plate,” AIAA Journal, Vol. 53, No. 7, 2015, pp. 2061–2067. doi:https://doi.org/10.2514/1.J053953 AIAJAH 0001-1452 LinkGoogle Scholar

  • [19] Akamine M., Okamoto K., Teramoto S., Okunuki T. and Tsutsumi S., “Conditional Sampling Analysis of Acoustic Phenomena from Supersonic Jet Impinging on Inclined Flat Plate,” Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 59, No. 5, 2016, pp. 287–294. doi:https://doi.org/10.2322/tjsass.59.287 TJASAM 0549-3811 CrossrefGoogle Scholar

  • [20] Tsutsumi S., Takaki R., Shima E., Fujii K. and Arita M., “Generation and Propagation of Pressure Waves from H-IIA Launch Vehicle at Lift-Off,” 48th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2008-0390, Jan. 2008. LinkGoogle Scholar

  • [21] Gee K. L., Neilsen T. B., Sommerfeldt S. D., Akamine M. and Okamoto K., “Experimental Validation of Acoustic Intensity Bandwidth Extension by Phase Unwrapping,” Journal of the Acoustical Society of America, Vol. 141, No. 4, 2017, pp. EL357–EL362. doi:https://doi.org/10.1121/1.4979604 CrossrefGoogle Scholar

  • [22] Moore C. J., “The Role of Shear-Layer Instability Waves in Jet Exhaust Noise,” Journal of Fluid Mechanics, Vol. 80, No. 2, 1977, pp. 321–367. doi:https://doi.org/10.1017/S0022112077001700 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [23] Camussi R. and Guj G., “Experimental Analysis of Intermittent Coherent Structures in the Near Field of a High Re Turbulent Jet Flow,” Physics of Fluids, Vol. 11, No. 2, 1999, pp. 423–431. doi:https://doi.org/10.1063/1.869859 CrossrefGoogle Scholar

  • [24] Guj G., Carley M. and Camussi R., “Acoustic Identification of Coherent Structures in a Turbulent Jet,” Journal of Sound and Vibration, Vol. 259, No. 5, 2003, pp. 1037–1065. doi:https://doi.org/10.1006/jsvi.2002.5130 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [25] Cavalieri A. V. G., Jordan P., Gervais Y., Wei M. and Freund J. B., “Intermittent Sound Generation and Its Control in a Free-Shear Flow,” Physics of Fluids, Vol. 22, No. 11, 2010, Paper 115113. doi:https://doi.org/10.1063/1.3517297 CrossrefGoogle Scholar

  • [26] Kœnig M., Cavalieri A. V. G., Jordan P., Delville J., Gervais Y. and Papamoschou D., “Farfield Filtering and Source Imaging of Subsonic Jet Noise,” Journal of Sound and Vibration, Vol. 332, No. 18, 2013, pp. 4067–4088. doi:https://doi.org/10.1016/j.jsv.2013.02.040 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [27] Hileman J. I., Thurow B. S., Caraballo E. J. and Samimy M., “Large-Scale Structure Evolution and Sound Emission in High-Speed Jets: Real-Time Visualization with Simultaneous Acoustic Measurements,” Journal of Fluid Mechanics, Vol. 544, Dec. 2005, pp. 277–307. doi:https://doi.org/10.1017/S002211200500666X JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [28] Kastner J., Samimy M., Hileman J. and Freund J. B., “Comparison of Noise Mechanisms in High and Low Reynolds Number High-Speed Jets,” AIAA Journal, Vol. 44, No. 10, 2006, pp. 2251–2258. doi:https://doi.org/10.2514/1.18384 AIAJAH 0001-1452 LinkGoogle Scholar

  • [29] Torrence C. and Compo G. P., “A Practical Guide to Wavelet Analysis,” Bulletin of the American Meteorological Society, Vol. 79, No. 1, 1998, pp. 61–78. doi:https://doi.org/10.1175/1520-0477(1998)079%3C0061:APGTWAtpmkset%20 BAMIAT 0003-0007 CrossrefGoogle Scholar

  • [30] Thomas D. C., Christensen B. Y. and Gee K. L., “Phase and Amplitude Gradient Method for the Estimation of Acoustic Vector Quantities,” Journal of the Acoustical Society of America, Vol. 137, No. 6, 2015, pp. 3366–3376. doi:https://doi.org/10.1121/1.4914996 CrossrefGoogle Scholar

  • [31] Mann J. A., Tichy J. and Romano A. J., “Instantaneous and Time-Averaged Energy Transfer in Acoustic Fields,” Journal of Acoustical Society of America, Vol. 82, No. 1, 1987, pp. 17–30. doi:https://doi.org/10.1121/1.395562 CrossrefGoogle Scholar

  • [32] Gee K. L., Whiting E. B., Neilsen T. B., James M. M. and Salton A. R., “Development of a Near-Field Intensity Measurement Capability for Static Rocket Firings,” Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, Vol. 14, No. 30, 2016, pp. Po_2_9–Po_2_15. doi:https://doi.org/10.2322/tastj.14.Po_2_9 CrossrefGoogle Scholar