Skip to main content
Skip to article control options
No AccessRegular Article

Dual Optimization of Contact-Aided Compliant Mechanisms for Passive Dynamic Shape Change

Published Online:https://doi.org/10.2514/1.J056927

A dual optimization method for optimizing contact-aided compliant mechanism design parameters and their spatial distribution in a dynamic ornithopter wing structure for increased pitch agility is presented. This methodology separates the task into two separate optimization problems where, first, a computationally efficient rigid-body dynamics model is used to determine the optimal stiffness and spatial distribution of the compliant mechanisms and, second, a detailed compliant mechanism design is developed and optimized that achieves the desired nonlinear stiffness. A rigid-body mechanics model of the wing structure is used to find the location and stiffness of a contact-aided compliant mechanism that will induce the forward sweep passively by coupling lift loads to forward sweep. The forward-swept compliant mechanism is then developed and optimized to achieve the desirable coupling. The free-flight pitch agility of an ornithopter is shown to increase via sweeping the wings forward during downstroke. A free-flight experiment is performed, and the novel contact-aided compliant mechanism is shown to induce the desired forward sweep during downstroke.

References

  • [1] Howell L. L., Compliant Mechanisms, Wiley, New York, 2001. Google Scholar

  • [2] Howell L. L. and Magleby S. P., Handbook of Compliant Mechanisms, Wiley, New York, 2013. CrossrefGoogle Scholar

  • [3] Tummala Y., Wissa A., Frecker M. and Hubbard J. E., “Design and Optimization of a Contact-Aided Compliant Mechanism for Passive Bending,” Journal of Mechanisms and Robotics, Vol. 6, No. 31013, 2014, Paper JMR-13-1179. Google Scholar

  • [4] Cirone S. A., Hayes G. R., Babcox B. L., Frecker M., Adair J. H. and Lesieutre G. A., “Design of Contact-Aided Compliant Cellular Mechanisms with Curved Walls,” Journal of Intelligent Materials Systems and Structures, Vol. 23, No. 16, 2012, pp. 1773–1785. doi:https://doi.org/10.1177/1045389X12453962 CrossrefGoogle Scholar

  • [5] Mehta V., Frecker M. and Lesieutre G. A., “Two-Step Design of Multicontact-Aided Cellular Compliant Mechanisms for Stress Relief,” Journal of Mechanical Design, Vol. 134, No. 12, 2012, Paper 121001. doi:https://doi.org/10.1115/1.4007694 CrossrefGoogle Scholar

  • [6] Mankame N. D. and Ananthasuresh G. K. K., “Topology Optimization for Synthesis of Contact-Aided Compliant Mechanisms Using Regularized Contact Modeling,” Computers and Structures, Vol. 82, Nos. 15–16, 2004, pp. 1267–1290. doi:https://doi.org/10.1016/j.compstruc.2004.02.024 CrossrefGoogle Scholar

  • [7] Deaconescu T. and Deaconescu A., “Pneumatic Muscle-Actuated Adjustable Compliant Gripper System for Assembly Operations,” Journal of Mechanical Engineering, Vol. 63, No. 4, 2017, pp. 225–234. doi:https://doi.org/10.5545/sv-jme.2016.4239 CrossrefGoogle Scholar

  • [8] Zobova A. A., Habra T., Van der Noot N., Dallali H., Tsagarakis N. G., Fisette P. and Ronsse R., “Multi-Physics Modelling of a Compliant Humanoid Robot,” Multibody System Dynamics, Vol. 39, Nos. 1–2, 2017, pp. 95–114. doi:https://doi.org/10.1007/s11044-016-9545-4 CrossrefGoogle Scholar

  • [9] Gao A., Member S., Liu H., Zou Y., Wang Z., Liang M. and Wang Z., “A Contact-Aided Asymmetric Steerable Catheter for Atrial Fibrillation Ablation,” IEEE Robotics and Automation Letters, Vol. 2, No. 3, 2017, pp. 1525–1531. doi:https://doi.org/10.1109/LRA.2017.2676351 CrossrefGoogle Scholar

  • [10] Kumar P., Sauer R. A. and Saxena A., “On Synthesis of Contact Aided Compliant Mechanisms Using the Material Mask Overlay Method,” International Design Engineering Technical Conferences, American Soc. of Mechanical Engineers, Fairfield, NJ, 2015, pp. 1–9. Google Scholar

  • [11] Mankame N. D. and Anathasuresh G. K., “Contact Aided Compliant Mechanisms: Concept and Preliminaries,” International Design Engineering Technical Conferences, American Soc. of Mechanical Engineers, Fairfield, NJ, 2002, pp. 109–121. Google Scholar

  • [12] Saxena A., “A Contact-Aided Compliant Displacement-Delimited Gripper Manipulator,” Journal of Mechanisms and Robotics, Vol. 5, No. 4, 2013, Paper 41005. doi:https://doi.org/10.1115/1.4024728 CrossrefGoogle Scholar

  • [13] Reddy B. V. S. N., Naik S. V. and Saxena A., “Systematic Synthesis of Large Displacement Contact-Aided Monolithic Compliant Mechanisms,” Journal of Mechanical Design, Vol. 134, No. 1, 2012, Paper 11007. Google Scholar

  • [14] Sharma D., Deb K. and Kishore N. N., “Towards Generating Diverse Topologies of Path Tracing Compliant Mechanisms Using a Local Search Based Multi-Objective Genetic Algorithm Procedure,” 2008 IEEE Congress of Evolutionary Computation (IEEE World Congress on Computational Intelligence), IEEE Publ., Piscataway, NJ, 2008, pp. 2004–2011. Google Scholar

  • [15] Kumar P., Saxena A. and Sauer R. A., “Implementation of Self Contact in Path Generating Compliant Mechanisms,” Microactuators and Micromechanics, Vol. 45, 2017, pp. 251–261. doi:https://doi.org/10.1007/978-3-319-45387-3_22 CrossrefGoogle Scholar

  • [16] Rai A. K., Saxena A. and Mankame N. D., “Synthesis of Path Generating Compliant Mechanisms Using Initially Curved Frame Elements,” Journal of Mechanical Design, Vol. 129, No. 10, Oct. 2007, Paper 1056. doi:https://doi.org/10.1115/1.2757191 CrossrefGoogle Scholar

  • [17] Rai A. K., Saxena A. and Mankame N. D., “Unified Synthesis of Compact Planar Path-Generating Linkages with Rigid and Deformable Members,” Structural and Multidisciplinary Optimization, Vol. 41, No. 6, 2010, pp. 863–879. doi:https://doi.org/10.1007/s00158-009-0458-1 SMOTB4 1615-1488 CrossrefGoogle Scholar

  • [18] Mankame N. D. and Ananthasuresh G. K., “A Novel Compliant Mechanism for Converting Reciprocating Translation into Enclosing Curved Paths,” Journal of Mechanical Design, Vol. 126, No. 4, 2004, pp. 667–672. doi:https://doi.org/10.1115/1.1759360 CrossrefGoogle Scholar

  • [19] Cannon J. R. and Howell L. L., “A Compliant Contact-Aided Revolute Joint,” Mechanism and Machine Theory, Vol. 40, No. 11, 2005, pp. 1273–1293. doi:https://doi.org/10.1016/j.mechmachtheory.2005.01.011 MHMTAS 0094-114X CrossrefGoogle Scholar

  • [20] Guérinot A. E., Magleby S. P., Howell L. L. and Todd R. H., “Compliant Joint Design Principles for High Compressive Load Situations,” Journal of Mechanical Design, Vol. 127, No. 4, 2005, Paper 774. doi:https://doi.org/10.1115/1.1862677 CrossrefGoogle Scholar

  • [21] Mehta V., Frecker M. and Lesieutre G. A., “Stress Relief in Contact-Aided Compliant Cellular Mechanisms,” Journal of Mechanical Design, Vol. 131, No. 9, 2009, Paper 91009. doi:https://doi.org/10.1115/1.3165778 CrossrefGoogle Scholar

  • [22] Calogero J., Frecker M., Wissa A. A. and Hubbard J. E., “Optimization of a Bend-Twist-and-Sweep Compliant Mechanism,” Smart Materials, Adaptive Structures, and Intelligent Systems, American Soc. of Mechanical Engineers, Fairfield, NJ, 2014, Paper 7518. Google Scholar

  • [23] Tummala Y., Frecker M. I., Wissa A. A. and Hubbard J. E., “Design Optimization of a Twist Compliant Mechanism with Nonlinear Stiffness,” Smart Materials, Adaptive Structures, and Intelligent Systems, American Soc. of Mechanical Engineers Paper  SMASIS2013-3031, Fairfield, NJ, 2013. Google Scholar

  • [24] Tummala Y., Frecker M. I., Wissa A. A. and Hubbard J. E., “Design and Optimization of a Bend-and-Sweep Compliant Mechanism,” Smart Materials and Structures, Vol. 22, No. 9, 2013, Paper 94019. doi:https://doi.org/10.1088/0964-1726/22/9/094019 SMSTER 0964-1726 CrossrefGoogle Scholar

  • [25] Wissa A. A., Tummala Y., Hubbard J. E. and Frecker M. I., “Passively Morphing Ornithopter Wings Constructed Using a Novel Compliant Spine: Design and Testing,” Smart Materials and Structures, Vol. 21, No. 9, 2012, Paper 94028. CrossrefGoogle Scholar

  • [26] Altuzarra O., Diez M., Corral J. and Campa F. J., “Kinematic Analysis of a Flexible Tensegrity Robot,” New Advances in Mechanisms, Mechanical Transmissions and Robotics, edited by Corves B., Lovasz E.-C., Hüsing M., Maniu I. and Gruescu C., Springer International, New York, 2017, pp. 457–464. CrossrefGoogle Scholar

  • [27] Hao G. and Hand R. B., “Design and Static Testing of a Compact Distributed-Compliance Gripper Based on Flexure Motion,” Archives of Civil and Mechanical Engineering, Vol. 16, No. 4, 2016, pp. 708–716. doi:https://doi.org/10.1016/j.acme.2016.04.011 CrossrefGoogle Scholar

  • [28] Yang T.-S., Shih P.-J. and Lee J.-J., “Design of a Spatial Compliant Translational Joint,” Mechanism and Machine Theory, Vol. 107, 2017, pp. 338–350. MHMTAS 0094-114X CrossrefGoogle Scholar

  • [29] Tummala Y., “Design and Optimization of Contact-Aided Compliant Mechanisms with Nonlinear Stiffness,” Ph.D. Dissertation, Pennsylvania State Univ., University Park, PA, 2013. Google Scholar

  • [30] Alqasimi A. and Lusk C., “Design of a Linear Bi-Stable Compliant Crank-Slider-Mechanism (LBCCSM),” International Design Engineering Technical Conferences, American Soc. of Mechanical Engineers Paper  DETC2014-34285, Fairfield, NJ, 2014. Google Scholar

  • [31] Tantanawat T. and Kota S., “Design of Compliant Mechanisms for Minimizing Input Power in Dynamic Applications,” Journal of Mechanical Design, Vol. 129, No. 10, Oct. 2007, pp. 1064–1075. doi:https://doi.org/10.1115/1.2756086 CrossrefGoogle Scholar

  • [32] Manzo J. and Garcia E., “Analysis and Optimization of the Active Rigidity Joint,” Smart Materials and Structures, Vol. 18, No. 12, 2009, Paper 125020. doi:https://doi.org/10.1088/0964-1726/18/12/125020 SMSTER 0964-1726 CrossrefGoogle Scholar

  • [33] Vogtmann D. E., Gupta S. K. and Bergbreiter S., “Characterization and Modeling of Elastomeric Joints in Miniature Compliant Mechanisms,” Journal of Mechanisms and Robotics, Vol. 5, No. 4, 2013, Paper 41017. doi:https://doi.org/10.1115/1.4025298 CrossrefGoogle Scholar

  • [34] Pavlovic N. T., Pavlovic N. D. and Milosevic M., “Selection of the Optimal Rigid-Body Counterpart Mechanism in the Compliant Mechanism Synthesis Procedure,” Microactuators and Micromechanics, Vol. 5, No. 4, Oct. 2013, Paper 041017. doi:https://doi.org/10.1115/1.4025298 Google Scholar

  • [35] Zhu S.-K. and Yu Y.-Q., “Pseudo-Rigid-Body Model for the Flexural Beam with an Inflection Point in Compliant Mechanisms,” Journal of Mechanisms and Robotics, Vol. 9, No. 3, 2017, Paper 31005. doi:https://doi.org/10.1115/1.4035986 CrossrefGoogle Scholar

  • [36] Wong K. V., “Research and Development of Drones for Peace—High Power High Energy Supply Required,” Journal of Energy Resources Technology, Vol. 137, May 2015, Paper 34702. Google Scholar

  • [37] Friswell M. I., “Morphing Aircraft: An Improbable Dream?Smart Materials, Adaptive Structures, and Intelligent Systems, American Soc. of Mechanical Engineers Paper  SMASIS2014-7754, Fairfield, NJ, 2014. CrossrefGoogle Scholar

  • [38] Shyy W., Berg M. and Ljungqvist D., “Flapping and Flexible Wings for Biological and Micro Air Vehicles,” Progress in Aerospace Sciences, Vol. 35, No. 5, 1999, pp. 455–505. doi:https://doi.org/10.1016/S0376-0421(98)00016-5 PAESD6 0376-0421 CrossrefGoogle Scholar

  • [39] Brown R. H. J., “The Flight of Birds. The Flapping Cycle of the Pigeon,” Journal of Experimental Biology, Vol. 25, No. 4, 1948, pp. 322–333. JEBIAM 0022-0949 Google Scholar

  • [40] Brown R. H. J., “The Flight of Birds II. Wing Function in Relation to Flight Speed,” Journal of Experimental Biology, Vol. 30, June 1952, pp. 90–103. JEBIAM 0022-0949 Google Scholar

  • [41] Videler J. J., Avian Flight, Oxford Univ. Press, New York, 2005, pp. 25–45. Google Scholar

  • [42] Taylor G. K., Carruthers A. C., Hubel T. Y., Walker S. M. and College R. V., Morphing Aerospace Vehicles and Structures, Wiley, New York, 2012, pp. 25–32. Google Scholar

  • [43] Demetgul M., Pino W. and Tansel I. N., “Morphing Wing Design for Ornithopters,” Early Career Technical Conference, American Soc. of Mechanical Engineers, Fairfield, NJ, 2008, pp. 4–7. Google Scholar

  • [44] Muller M., Muller B., Hensel S., Nestler M., Jahn S. F., Muller R., Schubert A., Drossel W.-G., Schubert A. and Drossel W. G., “Structural Integration of Piezoceramic Fibers in Deep Drawn Sheet Metal for Material-Integrated Health Monitoring,” Mechatronics, Vol. 34, March 2016, pp. 100–110. MECHER 0957-4158 CrossrefGoogle Scholar

  • [45] Billingsley D., Slipher G., Grauer J. and Hubbard J., “Testing of a Passively Morphing Ornithopter Wing,” AIAA Paper 2009-1828, 2009. LinkGoogle Scholar

  • [46] Mueller D., Gerdes J. W. and Gupta S. K., “Incorporation of Passive Wing Folding in Flapping Wing Miniature Air Vehicles,” International Design Engineering Technical Conferences, American Soc. of Mechanical Engineers, Fairfield, NJ, 2009, pp. 797–805. Google Scholar

  • [47] Stowers A. K. and Lentink D., “Folding In and Out: Passive Morphing in Flapping Wings,” Bioinspiration and Biomimetics, Vol. 10, No. 2, 2015, Paper 25001. CrossrefGoogle Scholar

  • [48] Gerdes J., Bruck H. A. and Gupta S. K., “A Systematic Exploration of Wing Size on Flapping Wing Air Vehicle Performance,” International Design Engineering Technical Conferences, American Soc. of Mechanical Engineers, Fairfield, NJ, 2015, Paper 47316. Google Scholar

  • [49] Dhruv A., Blower C. J. and Wickenheiser A. M., “A Three Dimensional Iterative Panel Method for Bio-Inspired Multi-Body Wings,” Smart Materials, Adaptive Structures, and Intelligent Systems, American Soc. of Mechanical Engineers, Fairfield, NJ, 2014, pp. 1–9. CrossrefGoogle Scholar

  • [50] Gordnier R. E. and Demasi L., “Implicit LES Simulations of a Flapping Wing in Forward Flight,” Fluids Engineering Division Summer Meeting, American Soc. of Mechanical Engineers Paper  FEDSM2013-16540, Fairfield, NJ, 2013. Google Scholar

  • [51] Alioli M., Morandini M., Masarati P. and Milano P., “Coupled Multibody-Fluid Dynamics Simulation of Flapping Wings,” International Design Engineering Technical Conferences, American Soc. of Mechanical Engineers, Fairfield, NJ, 2013, pp. 1–11. Google Scholar

  • [52] Gerdes J. W., Roberts L., Barnett E., Kempny J., Perez-Rosado A., Bruck H. A. and Gupta S. K., “Wing Performance Characterization for Flapping Wing Air Vehicles,” International Design Engineering Technical Conferences, American Soc. of Mechanical Engineers, Fairfield, NJ, 2013, pp. 1–10. Google Scholar

  • [53] Thwapiah G. Y. and Campanile L. F., “Experimental and Numerical Investigations on Nonlinear Aeroelasticity of Forward-Swept, Compliant Wings,” Journal of Mechanical Design, Vol. 134, No. 1, Jan. 2012, Paper 11009. doi:https://doi.org/10.1115/1.4005441 CrossrefGoogle Scholar

  • [54] Beals N. and Jones A. R., “Lift Production by a Passively Flexible Rotating Wing,” AIAA Journal, Vol. 53, No. 10, 2015, pp. 2995–3005. doi:https://doi.org/10.2514/1.J053863 AIAJAH 0001-1452 LinkGoogle Scholar

  • [55] Dimitriadis G., Gardiner J. D., Tickle P. G., Codd J. and Nudds R. L., “Experimental and Numerical Study of the Flight of Geese,” Aeronautical Journal, Vol. 15, No. 3, 2015, pp. 561–574. Google Scholar

  • [56] Guissart A., Bernal L. P., Dimitriadis G. and Terrapon V. E., “Using 2D-PIV Measurements to Compute Unsteady Aerodynamic Loads on a Flat Plate at High Angle of Attack,” International Forum on Aeroelasticity and Structural Dynamics (IFASD 2015), Dept. of Aerospace Science and Technology of Politecnico di Milano, Milano, Italy, 2015, pp. 1–15. Google Scholar

  • [57] Paranjape A. A. and Ananthkrishnan N., “Combat Aircraft Agility Metrics—A Review,” Journal of Aerospace Sciences and Technologies, Vol. 58, No. 2, 2006, pp. 143–154. Google Scholar

  • [58] Bitten R., “Qualitative and Quantitative Comparison of Government and Industry Agility Metrics,” Journal of Aircraft, Vol. 27, No. 3, 1990, pp. 276–282. doi:https://doi.org/10.2514/3.45930 LinkGoogle Scholar

  • [59] Videler J. J., Groenewegen A., Gnodde M. and Vossebelt G., “Indoor Flight Experiments with Trained Kestrels II. The Effect of Added Weight on Flapping Flight Kinematics,” Journal of Experimental Biology, Vol. 134, Jan. 1988, pp. 1–5. Google Scholar

  • [60] Liu T., Kuykendoll K., Rhew R. and Jones S., “Avian Wing Geometry and Kinematics,” AIAA Journal, Vol. 44, No. 5, 2006, pp. 954–963. doi:https://doi.org/10.2514/1.16224 AIAJAH 0001-1452 LinkGoogle Scholar

  • [61] Wolf T. and Konrath R., “Avian Wing Geometry and Kinematics of a Free-Flying Barn Owl in Flapping Flight,” Experiments in Fluids, Vol. 56, No. 2, 2015, pp. 1–18. doi:https://doi.org/10.1007/s00348-015-1898-6 EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [62] Tobalske B. W., Warrick D. R., Clark C. J., Powers D. R., Hedrick T. L., Hyder G. A. and Biewener A. A., “Three-Dimensional Kinematics of Hummingbird Flight,” Journal of Experimental Biology, Vol. 210, No. 13, 2007, pp. 2368–2382. doi:https://doi.org/10.1242/jeb.005686 CrossrefGoogle Scholar

  • [63] Tobalske B. and Dial K., “Flight Kinematics of Black-Billed Magpies and Pigeons over a Wide Range of Speeds,” Journal of Experimental Biology, Vol. 199, Pt. 2, 1996, pp. 263–280. Google Scholar

  • [64] Taylor G. K. and Thomas A. L. R., “Animal Flight Dynamics II. Longitudinal Stability in Flapping Flight,” Journal of Theoretical Biology, Vol. 214, No. 3, 2002, pp. 351–370. doi:https://doi.org/10.1006/jtbi.2001.2470 CrossrefGoogle Scholar

  • [65] Tummala Y., Wissa A., Frecker M. and Hubbard J. E., “Design of a Passively Morphing Ornithopter Wing Using a Novel Compliant Spine,” SMASIS, American Soc. of Mechanical Engineers Paper  SMASIS2010-3637, Fairfield, NJ, 2010. Google Scholar

  • [66] Wissa A., Tummala Y., Hubbard J. E., Frecker M., Brown A. and Hubbard J. E., “Testing of Novel Compliant Spines for Passive Wing Morphing,” SMASIS, American Soc. of Mechanical Engineers Paper  SMASIS2011-5198, Fairfield, NJ, 2011. Google Scholar

  • [67] Wissa A., Grauer J., Guerreiro N., Hubbard J., Altenbuchner C., Tummala Y., Frecker M. and Roberts R., “Free Flight Testing and Performance Evaluation of a Passively Morphing Ornithopter,” International Journal of Micro Air Vehicles, Vol. 7, No. 1, 2015, pp. 21–40. doi:https://doi.org/10.1260/1756-8293.7.1.21 CrossrefGoogle Scholar

  • [68] Tobalske B. W., “Biomechanics and Physiology of Gait Selection in Flying Birds,” Physiological and Biochemical Zoology, Vol. 73, No. 6, 2000, pp. 736–750. doi:https://doi.org/10.1086/318107 CrossrefGoogle Scholar

  • [69] Calogero J., Frecker M., Hasnain Z. and Hubbard J. E., “Optimization of a Forward-Swept Compliant Mechanism,” Smart Materials, Adaptive Structures and Intelligent Systems, American Soc. of Mechanical Engineers, Fairfield, NJ, 2017, pp. 1–10. Google Scholar

  • [70] Calogero J. P. J., Frecker M. M. I., Hasnain Z., Hubbard J. E. and Hubbard J. E., “A Dynamic Spar Numerical Model for Passive Shape Change,” Smart Materials and Structures, Vol. 25, No. 10, 2016, Paper 104006. doi:https://doi.org/10.1088/0964-1726/25/10/104006 SMSTER 0964-1726 CrossrefGoogle Scholar

  • [71] Calogero J., Frecker M., Hasnain Z. and Hubbard J. E., “Tuning of a Rigid-Body Dynamics Model of a Flapping Wing Structure with Compliant Joints,” Journal of Mechanisms and Robotics, Vol. 10, No. 1, 2018, Paper 011007. doi:https://doi.org/10.1115/1.4038441 CrossrefGoogle Scholar

  • [72] Calogero J., Frecker M., Hasnain Z. and Hubbard J. E. J., “Optimization of Spatially Distributed Contact-Aided Compliant Mechanisms in a Dynamic Structure,” Smart Materials, Adaptive Structures and Intelligent Systems, American Soc. of Mechanical Engineers, Fairfield, NJ, 2017, pp. 1–11. Google Scholar

  • [73] Meirovitch L., Analytical Methods in Vibrations, Macmillan, New York, 1967, pp. 390–393. Google Scholar

  • [74] MATLAB Global Optimization Toolbox User’s Guide,” MathWorks, Novi, MI, 2016. Google Scholar

  • [75] Deb K., Multi-Objective Optimization Using Evolutionary Algorithms, Wiley, New York, 2001, pp. 245–253. Google Scholar

  • [76] COMSOL Multiphysics®,” V.5.2., COMSOL AB, Stockholm, Sweden, 2015, www.comsol.com. Google Scholar

  • [77] Delrin Acetal Guide—Module III,” Dupont. Google Scholar

  • [78] Olympio K. R., “Design of a Passive Flexible Skin for Morphing Aircraft Structures,” M.S. Thesis, Pennsylvania State Univ., University Park, PA, 2006. Google Scholar

  • [79] Calogero J., “Dual Optimization of Contact-Aided Compliant Mechanisms and Spatial Distribution for Passive Shape Change,” Ph.D. Dissertation, Pennsylvania State Univ., University Park, PA, 2017. Google Scholar