Skip to main content
Skip to article control options
No AccessRegular Articles

Enhancing Model Predictability for a Scramjet Using Probabilistic Learning on Manifolds

Published Online:https://doi.org/10.2514/1.J057069

The computational burden of a large-eddy simulation for reactive flows is exacerbated in the presence of uncertainty in flow conditions or kinetic variables. A comprehensive statistical analysis, with a sufficiently large number of samples, remains elusive. Statistical learning is an approach that allows for extracting more information using fewer samples. Such procedures, if successful, will greatly enhance the predictability of models in the sense of improving exploration and characterization of uncertainty due to model error and input dependencies, all while being constrained by the size of the associated statistical samples. In this paper, it is shown how a recently developed procedure for probabilistic learning on manifolds can serve to improve the predictability in a probabilistic framework of a scramjet simulation. The estimates of the probability density functions of the quantities of interest are improved together with estimates of the statistics of their maxima. It is also demonstrated how the improved statistical model adds critical insight to the performance of the model.

References

  • [1] Soize C. and Ghanem R., “Data-Driven Probability Concentration and Sampling on Manifold,” Journal of Computational Physics, Vol. 321, Sept. 2016, pp. 242–258. doi:https://doi.org/10.1016/j.jcp.2016.05.044 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [2] Mantis G. C. and Mavris D. N., “A Bayesian Approach to Non-Deterministic Hypersonic Vehicle Design,” SAE Aerospace Congress and Exhibition, SAE TP 2001-01-3033, Warrendale, PA, 2001. doi:https://doi.org/10.4271/2001-01-3033 Google Scholar

  • [3] Witteveen J., Duraisamy K. and Iaccarino G., “Uncertainty Quantification and Error Estimation in Scramjet Simulation,” 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2011-2283, 2011. doi:https://doi.org/10.2514/6.2011-2283 LinkGoogle Scholar

  • [4] Constantine P. G., Emory M., Larsson J. and Iaccarino G., “Exploiting Active Subspaces to Quantify Uncertainty in the Numerical Simulation of the HyShot II Scramjet,” Journal of Computational Physics, Vol. 302, Dec. 2015, pp. 1–20. doi:https://doi.org/10.1016/j.jcp.2015.09.001 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [5] Geraci G., Eldred M. S. and Iaccarino G., “A Multifidelity Multilevel Monte Carlo Method for Uncertainty Propagation in Aerospace Applications,” 19th AIAA Non-Deterministic Approaches Conference, AIAA Paper 2017-1951, 2017. doi:https://doi.org/10.2514/6.2017-1951 LinkGoogle Scholar

  • [6] Huan X., Geraci G., Safta C., Eldred M. S., Sargsyan K., Vane Z. P., Oefelein J. C. and Najm H. N., “Multifidelity Statistical Analysis of Large Eddy Simulations in Scramjet Computations,” 20th AIAA Non-Deterministic Approaches Conference, AIAA Paper 2018-1180, 2018. doi:https://doi.org/10.2514/6.2018-1180 LinkGoogle Scholar

  • [7] Huan X., Safta C., Sargsyan K., Geraci G., Eldred M. S., Vane Z. P., Lacaze G., Oefelein J. C. and Najm H. N., “Global Sensitivity Analysis and Estimation of Model Error, Toward Uncertainty Quantification in Scramjet Computations,” AIAA Journal, Vol. 56, No. 3, 2018, pp. 1170–1184. doi:https://doi.org/10.2514/1.J056278 AIAJAH 0001-1452 LinkGoogle Scholar

  • [8] Feil M. and Staudacher S., “Uncertainty Quantification of a Generic Scramjet Engine Using a Probabilistic Collocation and a Hybrid Approach,” CEAS Aeronautical Journal, May 2018. doi:https://doi.org/10.1007/s13272-018-0303-6 CrossrefGoogle Scholar

  • [9] Urzay J., “Supersonic Combustion in Air-Breathing Propulsion Systems for Hypersonic Flight,” Annual Review of Fluid Mechanics, Vol. 50, No. 1, 2018, pp. 593–627. doi:https://doi.org/10.1146/annurev-fluid-122316-045217 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [10] Ghanem R. and Soize C., “Probabilistic Nonconvex Constrained Optimization with Fixed Number of Function Evaluations,” International Journal for Numerical Methods in Engineering, Vol. 113, No. 4, 2017, pp. 1–25. doi: https://doi.org/10.1002/nme.5632 IJNMBH 0029-5981 Google Scholar

  • [11] Coifman R., Lafon S., Lee A., Maggioni M., Nadler B., Warner F. and Zucker S., “Geometric Diffusions as a Tool for Harmonic Analysis and Structure Definition of Data: Diffusion Maps,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 102, No. 21, 2005, pp. 7426–7431. doi:https://doi.org/10.1073/pnas.0500334102 CrossrefGoogle Scholar

  • [12] Vapnik V., The Nature of Statistical Learning Theory, Springer, New York, 2000. CrossrefGoogle Scholar

  • [13] Aggarwal C. C. and Zhai C., Mining Text Data, Springer Science and Business Media, New York, 2012. CrossrefGoogle Scholar

  • [14] Dalalyan A. S. and Tsybakov A. B., “Sparse Regression Learning by Aggregation and Langevin Monte-Carlo,” Journal of Computer and System Sciences, Vol. 78, No. 5, 2012, pp. 1423–1443. doi:https://doi.org/10.1016/j.jcss.2011.12.023 JCSSBM 0022-0000 CrossrefGoogle Scholar

  • [15] Murphy K. P., Machine Learning: A Probabilistic Perspective, MIT Press, Cambridge, MA, 2012. Google Scholar

  • [16] Balcan M. F. F. and Feldman V., “Statistical Active Learning Algorithms,” Advances in Neural Information Processing Systems, 2013, pp. 1295–1303. Google Scholar

  • [17] James G., Witten D., Hastie T. and Tibshirani R., An Introduction to Statistical Learning, Vol. 112, Springer, New York, 2013. CrossrefGoogle Scholar

  • [18] Dong X., Gabrilovich E., Heitz G., Horn W., Lao N., Murphy K., Strohmann T., Sun S. and Zhang W., “Knowledge Vault: A Web-Scale Approach to Probabilistic Knowledge Fusion,” Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, New York, 2014, pp. 601–610. Google Scholar

  • [19] Ghahramani Z., “Probabilistic Machine Learning and Artificial Intelligence,” Nature, Vol. 521, No. 7553, 2015, pp. 452–459. doi:https://doi.org/10.1038/nature14541 CrossrefGoogle Scholar

  • [20] Taylor J. and Tibshirani R. J., “Statistical Learning and Selective Inference,” Proceedings of the National Academy of Sciences, Vol. 112, No. 25, 2015, pp. 7629–7634. doi:https://doi.org/10.1073/pnas.1507583112 CrossrefGoogle Scholar

  • [21] Ghanem R., Higdon D. and Owhadi H., Handbook of Uncertainty Quantification, Springer, New York, 2017. CrossrefGoogle Scholar

  • [22] Jones D., Schonlau M. and Welch W., “Efficient Global Optimization of Expensive Black-Box Functions,” Journal of Global Optimization, Vol. 13, No. 4, 1998, pp. 455–492. doi:https://doi.org/10.1023/A:1008306431147 JGOPEO 0925-5001 CrossrefGoogle Scholar

  • [23] Queipo N., Haftka R., Shyy W., Goel T., Vaidyanathan R. and Tucker K., “Surrogate-Based Analysis and Optimization,” Progress in Aerospace Science, Vol. 41, No. 1, 2005, pp. 1–28. doi:https://doi.org/10.1016/j.paerosci.2005.02.001 PAESD6 0376-0421 CrossrefGoogle Scholar

  • [24] Byrd R., Chin G., Neveitt W. and Nocedal J., “On the Use of Stochastic Hessian Information in Optimization Methods for Machine Learning,” SIAM Journal on Optimization, Vol. 21, No. 3, 2011, pp. 977–995. doi:https://doi.org/10.1137/10079923X CrossrefGoogle Scholar

  • [25] Homem-de Mello T. and Bayraksan G., “Monte Carlo Sampling-Based Methods for Stochastic Optimization,” Surveys in Operations Research and Management Science, Vol. 19, No. 1, 2014, pp. 56–85. doi:https://doi.org/10.1016/j.sorms.2014.05.001 CrossrefGoogle Scholar

  • [26] Keane A. J., “Statistical Improvement Criteria for Use in Multiobjective Design Optimization,” AIAA Journal, Vol. 44, No. 4, 2006, pp. 879–891. doi:https://doi.org/10.2514/1.16875 AIAJAH 0001-1452 LinkGoogle Scholar

  • [27] Kleijnen J., Van Beers W. and Van Nieuwenhuyse I., “Constrained Optimization in Expensive Simulation: Novel Approach,” European Journal of Operational Research, Vol. 202, No. 1, 2010, pp. 164–174. doi:https://doi.org/10.1016/j.ejor.2009.05.002 EJORDT 0377-2217 CrossrefGoogle Scholar

  • [28] Wang Z., Zoghi M., Hutter F., Matheson D. and De Freitas N., “Bayesian Optimization in a Billion Dimensions via Random Embeddings,” Journal of Artificial Intelligence Research, Vol. 55, Feb. 2016, pp. 361–387. doi:https://doi.org/10.1613/jair.4806 JAIRFR 1076-9757 CrossrefGoogle Scholar

  • [29] Xie J., Frazier P. and Chick S., “Bayesian Optimization via Simulation with Pairwise Sampling and Correlated Pair Beliefs,” Operations Research, Vol. 64, No. 2, 2016, pp. 542–559. doi:https://doi.org/10.1287/opre.2016.1480 OPREAI 0030-364X CrossrefGoogle Scholar

  • [30] Du X. and Chen W., “Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design,” Journal of Mechanical Design, Vol. 126, No. 2, 2004, pp. 225–233. doi:https://doi.org/10.1115/1.1649968 CrossrefGoogle Scholar

  • [31] Eldred M., “Design Under Uncertainty Employing Stochastic Expansion Methods,” International Journal for Uncertainty Quantification, Vol. 1, No. 2, 2011, pp. 119–146. doi:https://doi.org/10.1615/IntJUncertaintyQuantification.v1.i2 CrossrefGoogle Scholar

  • [32] Yao W., Chen X., Luo W., Vantooren M. and Guo J., “Review of Uncertainty-Based Multidisciplinary Design Optimization Methods for Aerospace Vehicles,” Progress in Aerospace Sciences, Vol. 47, No. 6, 2011, pp. 450–479. doi:https://doi.org/10.1016/j.paerosci.2011.05.001 PAESD6 0376-0421 CrossrefGoogle Scholar

  • [33] Kodiyalam S. and Gurumoorthy R., “Neural Network Approximator with Novel Learning Scheme for Design Optimization with Variable Complexity Data,” AIAA Journal, Vol. 35, No. 4, 1997, pp. 736–739. doi:https://doi.org/10.2514/2.166 AIAJAH 0001-1452 LinkGoogle Scholar

  • [34] Luo H. and Hanagud S., “Dynamic Learning Rate Neural Network Training and Composite Structural Damage Detection,” AIAA Journal, Vol. 35, No. 9, 1997, pp. 1522–1527. doi:https://doi.org/10.2514/2.7480 AIAJAH 0001-1452 LinkGoogle Scholar

  • [35] Tracey B., Wolpert D. and Alonso J. J., “Using Supervised Learning to Improve Monte Carlo Integral Estimation,” AIAA Journal, Vol. 51, No. 8, 2013, pp. 2015–2023. doi:https://doi.org/10.2514/1.J051655 AIAJAH 0001-1452 LinkGoogle Scholar

  • [36] Singh A. P., Medida S. and Duraisamy K., “Machine-Learning-Augmented Predictive Modeling of Turbulent Separated Flows over Airfoils,” AIAA Journal, Vol. 55, No. 7, 2017, pp. 2215–2227. doi:https://doi.org/10.2514/1.J055595 AIAJAH 0001-1452 LinkGoogle Scholar

  • [37] Dolvin D. J., “Hypersonic International Flight Research and Experimentation (HIFiRE),” 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2008-2581, 2008. doi:https://doi.org/10.2514/6.2008-2581 LinkGoogle Scholar

  • [38] Dolvin D. J., “Hypersonic International Flight Research and Experimentation,” 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2009-7228, 2009. doi:https://doi.org/10.2514/6.2009-7228 LinkGoogle Scholar

  • [39] Jackson K. R., Gruber M. R. and Barhorst T. F., “The HIFiRE Flight 2 Experiment: An Overview and Status Update,” 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2009-5029, 2009. doi:https://doi.org/10.2514/6.2009-5029 LinkGoogle Scholar

  • [40] Jackson K. R., Gruber M. R. and Buccellato S., “HIFiRE Flight 2 Overview and Status Uptate 2011,” 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2011-2202, 2011. doi:https://doi.org/10.2514/6.2011-2202 LinkGoogle Scholar

  • [41] Jackson K. R., Gruber M. R. and Buccellato S., “Mach 68+ Hydrocarbon-Fueled Scramjet Flight Experiment: The HIFiRE Flight 2 Project,” Journal of Propulsion and Power, Vol. 31, No. 1, 2015, pp. 36–53. doi:https://doi.org/10.2514/1.B35350 JPPOEL 0748-4658 LinkGoogle Scholar

  • [42] Hass N. E., Cabell K. F. and Storch A. M., “HIFiRE Direct-Connect Rig (HDCR) Phase I Ground Test Results from the NASA Langley Arc-Heated Scramjet Test Facility,” NASA TR LF99-8888, 2010. Google Scholar

  • [43] Storch A. M., Bynum M., Liu J. and Gruber M., “Combustor Operability and Performance Verification for HIFiRE Flight 2,” 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2011-2249, 2011. doi:https://doi.org/10.2514/6.2011-2249 LinkGoogle Scholar

  • [44] Cabell K. F., Hass N. E., Storch A. M. and Gruber M., “HIFiRE Direct-Connect Rig (HDCR) Phase I Scramjet Test Results from the NASA Langley Arc-Heated Scramjet Test Facility,” 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2011-2248, 2011. doi:https://doi.org/10.2514/6.2011-2248 Google Scholar

  • [45] Pellett G. L., Vaden S. N. and Wilson L. G., “Opposed Jet Burner Extinction Limits: Simple Mixed Hydrocarbon Scramjet Fuels vs Air,” 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2007-5664, 2007. doi:https://doi.org/10.2514/6.2007-5664 LinkGoogle Scholar

  • [46] Lu T. and Law C. K., “A Directed Relation Graph Method for Mechanism Reduction,” Proceedings of the Combustion Institute, Vol. 30, No. 1, 2005, pp. 1333–1341. doi:https://doi.org/10.1016/j.proci.2004.08.145 Google Scholar

  • [47] Zambon A. C. and Chelliah H. K., “Explicit Reduced Reaction Models for Ignition, Flame Propagation, and Extinction of C2H4/CH4/H2 and Air Systems,” Combustion and Flame, Vol. 150, Nos. 1–2, 2007, pp. 71–91. doi:https://doi.org/10.1016/j.combustflame.2007.03.003 CBFMAO 0010-2180 CrossrefGoogle Scholar

  • [48] Oefelein J. C., “Large Eddy Simulation of Turbulent Combustion Processes in Propulsion and Power Systems,” Progress in Aerospace Sciences, Vol. 42, No. 1, 2006, pp. 2–37. doi:https://doi.org/10.1016/j.paerosci.2006.02.001 PAESD6 0376-0421 CrossrefGoogle Scholar

  • [49] Oefelein J. C., “Simulation and Analysis of Turbulent Multiphase Combustion Processes at High Pressures,” Ph.D. Thesis, Pennsylvania State Univ., State College, PA, 1997. Google Scholar

  • [50] Oefelein J. C., Schefer R. W. and Barlow R. S., “Toward Validation of Large Eddy Simulation for Turbulent Combustion,” AIAA Journal, Vol. 44, No. 3, 2006, pp. 418–433. doi:https://doi.org/10.2514/1.16425 AIAJAH 0001-1452 LinkGoogle Scholar

  • [51] Oefelein J. C., Lacaze G., Dahms R., Ruiz A. and Misdariis A., “Effects of Real-Fluid Thermodynamics on High-Pressure Fuel Injection Processes,” SAE International Journal of Engines, Vol. 7, No. 3, 2014, pp. 1125–1136. doi:https://doi.org/10.4271/2014-01-1429 CrossrefGoogle Scholar

  • [52] Lacaze G., Misdariis A., Ruiz A. and Oefelein J. C., “Analysis of High-Pressure Diesel Fuel Injection Processes Using LES with Real-Fluid Thermodynamics and Transport,” Proceedings of the Combustion Institute, Vol. 35, No. 2, 2015, pp. 1603–1611. doi:https://doi.org/10.1016/j.proci.2014.06.072 CrossrefGoogle Scholar

  • [53] Jaynes E. T., “Information Theory and Statistical Mechanics,” Physical Review, Vol. 106, No. 4, 1957, pp. 620–630. doi:https://doi.org/10.1103/PhysRev.106.620 PHRVAO 0031-899X CrossrefGoogle Scholar

  • [54] Jaynes E. T., “Information Theory and Statistical Mechanics. II,” Physical Review, Vol. 108, No. 2, 1957, pp. 171–190. doi:https://doi.org/10.1103/PhysRev.108.171 PHRVAO 0031-899X CrossrefGoogle Scholar

  • [55] Gruber M. R., Jackson K. and Liu J., “Hydrocarbon-Fueled Scramjet Combustor Flowpath Development for Mach 6-8 HIFiRE Flight Experiments,” U.S. Air Force Research Lab. TR AFRL-RZ-WP-TP-2010-2243, Wright–Patterson AFB, OH, 2008. Google Scholar

  • [56] Soize C., “Polynomial Chaos Expansion of a Multimodal Random Vector,” SIAM/ASA Journal on Uncertainty Quantification, Vol. 3, No. 1, 2015, pp. 34–60. doi:https://doi.org/10.1137/140968495 CrossrefGoogle Scholar

  • [57] Bowman A. and Azzalini A., Applied Smoothing Techniques for Data Analysis, Oxford Univ. Press, Oxford, England, U.K., 1997. Google Scholar

  • [58] Scott D., Multivariate Density Estimation: Theory, Practice, and Visualization, 2nd ed., Wiley, New York, 2015. CrossrefGoogle Scholar

  • [59] Soize C., “Construction of Probability Distributions in High Dimension Using the Maximum Entropy Principle. Applications to Stochastic Processes, Random Fields and Random Matrices,” International Journal for Numerical Methods in Engineering, Vol. 76, No. 10, 2008, pp. 1583–1611. doi:https://doi.org/10.1002/nme.v76:10 IJNMBH 0029-5981 CrossrefGoogle Scholar

  • [60] Girolami M. and Calderhead B., “Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods,” Journal of the Royal Statistical Society, Series B: Statistical Methodology, Vol. 73, No. 2, 2011, pp. 123–214. doi:https://doi.org/10.1111/rssb.2011.73.issue-2 CrossrefGoogle Scholar

  • [61] Neal R, “MCMC Using Hamiltonian Dynamics,” Handbook of Markov Chain Monte Carlo, edited by Brooks S., Gelman A., Jones G. and Meng X., Chapman and Hall/CRC Press, Boca Raton, FL, 2012. Google Scholar

  • [62] Spall J., Introduction to Stochastic Search and Optimization, Wiley, Hoboken, NJ, 2003. CrossrefGoogle Scholar