Skip to main content
Skip to article control options
No AccessRegular Article

Differential Turbulent Supersonic Combustion of Hydrogen, Methane, and Ethylene, Without Assisted Ignition

Published Online:

Although hydrogen has the desired ignition properties for supersonic combustion in a scramjet, it has the disadvantage of low energy density, thereby motivating the interest in alternate, mostly hydrocarbon, fuels, such as methane, ethylene, and kerosene. Because the hydrocarbon fuels do not ignite easily, their use in scramjet combustion, where the strain rate is large and flame stability is difficult to maintain, depends on assisted ignition. However, a comparative evaluation of the combustion characteristics of these fuels under realistic turbulent supersonic conditions in a scramjet engine, and within the framework of advanced and highly efficient combustion modeling with detailed chemical mechanism, has not received enough attention. This study has the objective of addressing this issue. The effects of superposing ignition assistance can then be clearly delineated in subsequent studies. Three questions pertaining to the comparative combustion characteristics of hydrogen, ethylene, and methane under laminar flame condition, the significance of progress variable modeling, and turbulent supersonic combustion conditions are answered in this paper. To accomplish this, detailed analysis of opposed-jet flame is carried out for the fuels for the purpose of selecting the kinetic mechanisms, comparing the combustion characteristics, and studying the bifurcation curves for the three fuels as a function of pressure. Turbulent supersonic combustion simulations are then carried out using large-eddy simulations, from which many interesting results have been obtained. For example, of the three fuels, only hydrogen exhibits the backpressure phenomenon, which is traced to combustion-generated choking, rather than to high mechanical pressure from injection.


  • [1] Ferri A., Libby P. A. and Zakkay A., “Theoretical and Experimental Investigation of Supersonic Combustion,” ARL Rept.  62-467, Wright-Patterson Air Force Base, OH, 1962. doi: Google Scholar

  • [2] Ferri A., “Mixing-Controlled Supersonic Combustion,” Annual Review of Fluid Mechanics, Vol. 5, No. 1, 1973, pp. 301–338. doi: ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [3] Smart M., “Scramjets,” The Aeronautical Journal, Vol. 111, No. 1124, 2007, pp. 605–619. doi: AENJAK 0001-9240 CrossrefGoogle Scholar

  • [4] Curran E. T., Heiser W. H. and Pratt D. T., “Fluid Phenomenon in Scramjet Combustion Systems,” Annual Review of Fluid Mechanics, Vol. 28, No. 1, 1996, pp. 323–360. doi: ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [5] Drummond J. P., “Methods for Prediction of High-Speed Reacting Flows in Aerospace Propulsion,” AIAA Journal, Vol. 52, No. 3, 2014, pp. 465–485. doi: AIAJAH 0001-1452 LinkGoogle Scholar

  • [6] Ladeinde F. and Lou Z., “Improved Flamelet Modeling of Supersonic Combustion,” Journal of Propulsion and Power, Vol. 34, No. 3, 2018, pp. 750–761. doi: LinkGoogle Scholar

  • [7] Ladeinde F., “Advanced Computational-Fluid-Dynamic Techniques for Scramjet Combustion Simulation,” AIAA Journal, Vol. 48, No. 3, March 2010, pp. 513–514. doi: AIAJAH 0001-1452 LinkGoogle Scholar

  • [8] Ladeinde F., Alabi K.A., Ladeinde T.A., Davis D., Satchell M. and Baurle R.A., “Enhancements for Supersonic Combustion Simulation with VULCAN,” AIAA Paper 2010-6876, July 2010. doi: LinkGoogle Scholar

  • [9] Ladeinde F., “A Critical Review of Scramjet Combustion Simulation (Invited),” AIAA Paper 2009-0127, Jan. 2009. doi: LinkGoogle Scholar

  • [10] Saghafian A., Shunn L., Philips D. A. and Ham F., “Large-Eddy Simulations of the HIFiRE Scramjet Using a Compressible Flamelet/Progress Variable Approach,” Proceedings of the Combustion Institute, Vol. 35, No. 2, 2015, pp. 2163–2172. doi: CrossrefGoogle Scholar

  • [11] Eklund D. R., Baurle R. A. and Gruber M. R., “Numerical Study of a Scramjet Combustor Fueled by an Aerodynamic Ramp Injector in Dual-Mode Combustion,” AIAA Paper 2010-0379, Jan. 2010. doi: Google Scholar

  • [12] Xiao X., Hassan H. A. and Baurle R. A., “Modeling Scramjet Flows with Variable Turbulent Prandtl and Schmidt Numbers,” AIAA Journal, Vol. 45, No. 6, 2007, pp. 1415–1423. doi: AIAJAH 0001-1452 LinkGoogle Scholar

  • [13] Montgomery C. J., Zhao W., Adams B. R., Eklund D. R. and Chen J.-Y., “Supersonic Combustion Simulations Using Reduced Chemical Kinetics Mechanisms and ISAT,” AIAA Paper 2003-3547, July 2003. doi: Google Scholar

  • [14] Balakrishnan G and Williams F. A., “Turbulent Combustion Regimes for Hypersonic Propulsion Employing Hydrogen-Air Diffusion Flames,” Journal of Propulsion and Power, Vol. 10, No. 3, 1994, pp. 434–437. doi: JPPOEL 0748-4658 LinkGoogle Scholar

  • [15] Urzay J., Kseib N., Palacios F., Larsson J. and Iaccarino G., “A Stochastic Flamelet Progerss-Variable Approach for Numerical Simulations of High-Speed Turbulent Combustion Under Chemical-Kinetic Uncertainties,” Annual Research Briefs, Vol. 2012, Center for Turbulence Research, Stanford Univ., CA, pp. 12–30. Google Scholar

  • [16] Pierce C. D. and Moin P., “Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion,” Journal of Fluid Mechanics, Vol. 504, April 1999, pp. 73–97. doi: JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [17] Saghafian A., Terrapon V. E. and Pitsch H., “An Efficient Flamelet-Based Combustion Model for Compressible Flows,” Combustion and Flame, Vol. 162, No. 3, 2015, pp. 652–667. doi: CBFMAO 0010-2180 CrossrefGoogle Scholar

  • [18] Quinlan J., Drozda T. G., McDaniel J. C., Lacaze G. and Oefelein J. C., “A Priori Analysis of a Compressible Flamelet Model Using RANS Data for a Dual-Mode Scramjet Combustor,” AIAA Paper 2015-3208, June 2015. LinkGoogle Scholar

  • [19] George E., Sabel’nikov V. and Magre P., “Les and Experimental Study of Self-Ignition of Supersonic Hydrogen and Methane-Hydrogen Jets in a Vitiated Confined Supersonic Air Stream,” 5th International Symposium on Turbulence and Shear Flow Phenomena, TU Munich, Aug. 2007. Google Scholar

  • [20] George E., Sabel’nikov V. and Magre P., “Self-Ignition of Ethylene-Hydrogen Mixtures in Unsteady Thermal Choking Conditions: Numerical Unsteady RANS Investigations,” West-End High Speed Flow Field Conference, ERCOFTAC, London, Nov. 2007. Google Scholar

  • [21] Pecnik R., Terrapon V. E., Ham F., Iaccarino G. and Pitsch H., “Reynolds-Averaged Navier-Stokes Simulations of the HyShot II Scramjet,” AIAA Journal, Vol. 50, No. 8, 2012, pp. 1717–1732. doi: AIAJAH 0001-1452 LinkGoogle Scholar

  • [22] Denman Z. J., Wheatley V., Smart M. K. and Veeraragavan A., “Fuel Injection and Mixing in a Mach 8 Hydrocarbon-Fuelled Scramjet,” 20th Australasian Fluid Mechanics Conference, Australasian Fluid Mechanics Soc., Victoria, Australia, Dec. 2016. Google Scholar

  • [23] Peters N., “Laminar Flamelet Concepts in Turbulent Combustion,” 21st Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, 1986, pp. 1231–1250. Google Scholar

  • [24] Peters N., Turbulent Combustion, 1st ed., Cambridge Univ. Press, Cambridge, U.K., 1994, pp. 1–261. doi: Google Scholar

  • [25] Mueller E. M., Iaccarino G. and Pitsch H., “Chemical Kinetic Uncertainty Quantification for Large Eddy Simulation of Turbulent Nonpremixed Combustion,” Proceedings of the Combustion Institute, Vol. 34, No. 1, 2013, pp. 1299–1306. doi: CrossrefGoogle Scholar

  • [26] ÓConaire M., Curran H. J., Simmie J. M., Pitz W. J. and Westbrook C. K., “A Comprehensive Modeling Study of Hydrogen Oxidation,” International Journal of Chemical Kinetics, Vol. 36, No. 11, 2004, pp. 603–622. doi: IJCKBO 0538-8066 CrossrefGoogle Scholar

  • [27] Echekki T. and Chen J. H., “Direct Numerical Simulation of Autoignition in Non-Homogeneous Hydrogen–Air Mixtures,” Combustion and Flame, Vol. 134, No. 3, 2003, pp. 169–191. doi: CrossrefGoogle Scholar

  • [28] Jachimowski C. J., “An Analytical Study of the Hydrogen-Air Reaction Mechanism with Application to Scramjet Combustion,” NASA TP 2791, 1988. Google Scholar

  • [29] Smith G. P., Golden D. M., Frenklach M., Moriarty N. W., Eiteneer B., Goldenberg M., Bowman C. T., Hanson R. K., Song S., Gardiner W. C. and et al., GRI-Mech, 1999, Google Scholar

  • [30] Bowman C. T., GRI-Mech 2.11, 1995, Google Scholar

  • [31] Bilger R. W., Stårner S. H. and Kee R. J., “On Reduced Mechanisms for Methane-Air Combustion in Nonpremixed Flames,” Combustion and Flame, Vol. 80, No. 2, 1990, pp. 135–149. doi: CBFMAO 0010-2180 CrossrefGoogle Scholar

  • [32] Kazakov A., Wang H. and Frenklach M., “Detailed Modeling of Soot Formation in Laminar Premixed Ethylene Flames at a Pressure of 10 Bar,” Combustion and Flame, Vol. 100, Nos. 1–2, 1995, pp. 111–120. Also 1995. DRM19, doi: CBFMAO 0010-2180 CrossrefGoogle Scholar

  • [33] Kee R. J., Rupley F. M. and Miller J. A., “Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas- Phase Chemical Kinetics,” Sandia National Labs. Rept.  SAND-89-8009, Livermore, CA, 1989. Google Scholar

  • [34] Barlow R. W., Dibble R. W., Starner S. H. and Bilger R. W., “Piloted Diffusion Flames of Nitrogen-Diluted Methane near Extinction: OH Measurements,” Proceedings of the Combustion Institute, Vol. 23, No. 1, 1991, pp. 583–589. doi: CrossrefGoogle Scholar

  • [35] Ladeinde F., Cai X. C., Alabi K. and Safta C., “The First High-Order CFD Simulation of Aircraft: Challenges and Opportunities,” AIAA Paper 2006-1526, 2006. Google Scholar

  • [36] Gaitonde D. and Visbal M. R., “High-Order Schemes for Navier–Stokes Equations: Algorithm and Implementation into FDL3DI,” AFRL TR VA-WP-TR-1998-3060, Wright-Patterson Air Force Base, OH, 1998. CrossrefGoogle Scholar

  • [37] Yoon Y., Donbar J. M., Huh H. and Driscoll J. F., “Measured Supersonic Flame Properties-Heat-Release Patterns, Pressure Losses, Thermal Choking Limits,” Journal of Propulsion and Power, Vol. 12, No. 4, 1996, pp. 718–723. doi: JPPOEL 0748-4658 LinkGoogle Scholar

  • [38] Choi J. Y., Ma F. and Yang V., “Combustion Oscillations in a Scramjet Engine Combustor with Transverse Fuel Injection,” Proceedings of the Combustion Institute, Vol. 30, No. 2, 2005, pp. 2851–2858. doi: CrossrefGoogle Scholar

  • [39] Fureby C., “Comparison of Flamelet and Finite Rate Chemistry LES for Premixed Turbulent Combustion,” AIAA Paper 2007-1413, Jan. 2007. LinkGoogle Scholar

  • [40] Li W., Lou Z. and Ladeinde F., “Comparison of Flamelet and Transported Species-Based Modeling of Scramjet Combustor,” AIAA Propulsion and Energy Meeting, AIAA Paper 2017-4745, July 2017. LinkGoogle Scholar

  • [41] Bonfiglioli A. and Paciorri R., “Convergence Analysis of Shock-Capturing and Shock-Fitting Solutions on Unstructured Grids,” AIAA Journal, Vol. 52, No. 7, 2014, pp. 1404–1416. doi: AIAJAH 0001-1452 LinkGoogle Scholar

  • [42] Safta C., Alabi K., Ladeinde F., Cai X., Kiel B. and Sekar B., “Comparative Advantages of High-Order Schemes for Subsonic, Transonic, and Supersonic Flows,” 45th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2006-299, Jan. 2006. doi: LinkGoogle Scholar

  • [43] Ladeinde F., Liu W. and O’Brien E. E., “Turbulence in Compressible Mixing Layers,” ASME Journal of Fluids Engineering, Vol. 120, No. 1, 1998, pp. 48–53. doi: CrossrefGoogle Scholar

  • [44] Ladeinde F., “Supersonic Flux-Split Procedure for Second Moments of Turbulence,” AIAA Journal, Vol. 33, No. 7, 1995, pp. 1185–1195. doi: AIAJAH 0001-1452 LinkGoogle Scholar