Skip to main content
Skip to article control options
No AccessRegular Articles

Three-Way Spectral Decompositions of High-Performance Military Aircraft Noise

Published Online:https://doi.org/10.2514/1.J057992

High-performance military aircraft noise contains large- and fine-scale turbulent mixing noise and broadband shock-associated noise. A three-way spectral decomposition quantifies the contribution from each noise type in the sound of a tied-down F-35B aircraft on a linear ground-based array spanning 35–152 deg. This large spatial aperture allows for detailed investigation into the spatial variation in broadband shock-associated noise and fine- and large-scale turbulent mixing noise. The spectral models used in the decomposition capture the main features of the measured spectra with three exceptions: 1) that the F-35B engine noise contains multiple spectral peaks in the maximum radiation region, 2) that the nonlinear propagation increases the high-frequency spectral levels, and 3) that the low-frequency levels in the maximum radiation region are less than those predicted by the large-scale similarity spectrum. The F-35B broadband shock-associated noise has the same characteristic shape and variation in peak frequency as overexpanded, laboratory-scale jets. However, the peak level and width exhibit different trends than laboratory-scale broadband shock-associated noise and those recently reported for the F/A-18E aircraft. The strengths and limitations of current models to represent the spatial variation in the spectral content of F-35B noise can guide research efforts to more fully understand the sound radiation.

References

  • [1] Tam C. K. W., “Supersonic Jet Noise,” Annual Review of Fluid Mechanics, Vol. 27, No. 1, 1995, pp. 17–43. doi:https://doi.org/10.1146/annurev.fl.27.010195.000313 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [2] Tam C. K. W., “Jet Noise: Since 1952,” Theoretical and Computational Fluid Dynamics, Vol. 10, Nos. 1–4, 1998, pp. 393–405. doi:https://doi.org/10.1007/s001620050072 TCFDEP 0935-4964 CrossrefGoogle Scholar

  • [3] Viswanathan K., “Aeroacoustics of Hot Jets,” Journal of Fluid Mechanics, Vol. 516, Oct. 2004, pp. 39–82. doi:https://doi.org/10.1017/S0022112004000151 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [4] Harper-Bourne M. and Fisher M. J., “The Noise from Shockwaves in Supersonic Jets,” AGARD, CP-131, 1974, pp. 11.1–11.13. Google Scholar

  • [5] Petitjean B. P., Viswanathan K. and McLaughlin D. K., “Acoustic Pressure Waveforms Measured in High Speed Jet Noise Experiencing Nonlinear Propagation,” International Journal of Aeroacoustics, Vol. 5, No. 2, 2006, pp. 193–215. doi:https://doi.org/10.1260/147547206777629835 CrossrefGoogle Scholar

  • [6] Schlinker R. H., “Supersonic Jet Noise Experiments,” Ph.D. Dissertation, Univ. of Southern California, Los Angeles, CA, 1975. Google Scholar

  • [7] Laufer J., Schlinker R. and Kaplan R. E., “Experiments on Supersonic Jet Noise,” AIAA Journal, Vol. 14, No. 4, 1976, pp. 489–497. doi:https://doi.org/10.2514/3.61388 AIAJAH 0001-1452 LinkGoogle Scholar

  • [8] Tam C. K. W., Viswanathan K., Ahuja K. K. and Panda J., “The Sources of Jet Noise: Experimental Evidence,” Journal of Fluid Mechanics, Vol. 615, Nov. 2008, pp. 253–292. doi:https://doi.org/10.1017/S0022112008003704 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [9] Viswanathan K., “Analysis of the Two Similarity Components of Turbulent Mixing Noise,” AIAA Journal, Vol. 40, No. 9, 2002, pp. 1735–1744. doi:https://doi.org/10.2514/2.1878 AIAJAH 0001-1452 LinkGoogle Scholar

  • [10] Tam C. K. W., Golebiowsky M. and Seiner J. M., “On the Two Components of Turbulent Mixing Noise from Supersonic Jets,” AIAA Paper 1996-1716, May 1996. doi:https://doi.org/10.2514/6.1996-1716 LinkGoogle Scholar

  • [11] Tam C. K. W. and Zaman K., “Subsonic Noise from Nonaxisymmetric and Tabbed Nozzles,” AIAA Journal, Vol. 38, No. 4, 2000, pp. 592–599. doi:https://doi.org/10.2514/3.14449 AIAJAH 0001-1452 LinkGoogle Scholar

  • [12] Vaughn A. B., Neilsen T. B., Gee K. L., Okamoto K. and Akamine M., “Near-Field Spatial Variation in Similarity Spectra Decomposition of a Mach 1.8 Laboratory-Scale Jet,” Proceedings of Meetings on Acoustics, Vol. 29, Paper  045004, 2016, pp. 1–10. doi:https://doi.org/10.1121/2.0000456 Google Scholar

  • [13] Liu J., Kailasanath K. and Gutmark E. J., “Similarity Spectra of Highly Heated Supersonic Jets Using Large-Eddy Simulations,” AIAA Paper 2017-0926, 2017. doi:https://doi.org/10.2514/6.2017-0926 LinkGoogle Scholar

  • [14] Schlinker R. H., Liljenberg S. A., Polak D. R., Post K. A., Chipman C. T. and Stern A. M., “Supersonic Jet Noise Source Characteristics & Propagation: Engine and Model Scale,” AIAA Paper 2007-3623, 2007. doi:https://doi.org/10.2514/6.2007-3623 Google Scholar

  • [15] Neilsen T. B., Gee K. L., Wall A. T. and James M. M., “Similarity Spectra Analysis of High-Performance Jet Aircraft Noise,” Journal of the Acoustical Society of America, Vol. 133, No. 4, 2013, pp. 2116–2125. doi:https://doi.org/10.1121/1.4792360 JASMAN 0001-4966 CrossrefGoogle Scholar

  • [16] McKinley R., McKinley R., Gee K. L., Pilon T., Mobley F., Gillespie M. and Downing J. M., “Measurement of Near-Field and Far-Field Noise from Full-Scale High-Performance Jet Engines,” Proceedings of ASME Turbo Expo 2010, American Soc. of Mechanical Engineers Paper  GT2010-22531, Glasgow, Scotland, June 2010. CrossrefGoogle Scholar

  • [17] Neilsen T. B., Gee K. L., Wall A. T., James M. M. and Atchley A. A., “Comparison of Supersonic Full-Scale and Laboratory-Scale Jet Data and the Similarity Spectra for Turbulent Mixing Noise,” Proceedings of Meetings on Acoustics, Vol. 19, Paper  040071, 2013, pp. 1–8. doi:https://doi.org/10.1121/1.4799664 Google Scholar

  • [18] Tam C. K. W., Aubert A. C., Spyropoulos J. T. and Powers R. W., “On the Dominant Noise Components of Tactical Aircraft: Laboratory to Full Scale,” Journal of Sound and Vibration, Vol. 422, May 2018, pp. 92–111. doi:https://doi.org/10.1016/j.jsv.2018.02.023 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [19] Harker B. M., Neilsen T. B., Gee K. L., Wall A. T., McInerny S. A. and James M. M., “On Autocorrelation Analysis of Jet Noise,” Journal of the Acoustical Society of America, Vol. 133, No. 6, 2013, pp. EL458–EL464. doi:https://doi.org/10.1121/1.4802913 JASMAN 0001-4966 CrossrefGoogle Scholar

  • [20] Harker B. M., Neilsen T. B., Gee K. L., Wall A. T. and James M. M., “Spatiotemporal Correlation Analysis of Jet Noise from a High-Performance Military Aircraft,” AIAA Journal, Vol. 54, No. 5, 2016, pp. 1554–1566. doi:https://doi.org/10.2514/1.J054442 AIAJAH 0001-1452 LinkGoogle Scholar

  • [21] Faranosov G. A., Belyaev I. V., Kopiev V. F., Zaytsev M. Y., Aleksentsev A. A., Bersenev Y. V., Chursin V. A. and Viskova T. A., “Adaptation of the Azimuthal Decomposition Technique to Jet Noise Measurements in Full-Scale Tests,” AIAA Journal, Vol. 55, No. 2, 2017, pp. 572–584. doi:https://doi.org/10.2514/1.J055001 AIAJAH 0001-1452 LinkGoogle Scholar

  • [22] Seiner J. M. and Norum T. D., “Experiments of Shock Associated Noise of Supersonic Jets,” AIAA Paper 1979-1526, 1979. LinkGoogle Scholar

  • [23] Norum T. D. and Seiner J. M., “Broadband Shock Noise from Supersonic Jets,” AIAA Journal, Vol. 20, No. 1, 1982, pp. 68–73. doi:https://doi.org/10.2514/3.51048 AIAJAH 0001-1452 LinkGoogle Scholar

  • [24] Seiner J. M. and Yu J. C., “Acoustic Near-Field Properties Associated with Broadband Shock Noise,” AIAA Journal, Vol. 22, No. 9, 1984, pp. 1207–1215. doi:https://doi.org/10.2514/3.8762 AIAJAH 0001-1452 LinkGoogle Scholar

  • [25] Tanna H. K., “An Experimental Study of Jet Noise Part II: Shock Associated Noise,” Journal of Sound and Vibration, Vol. 50, No. 3, 1977, pp. 429–444. doi:https://doi.org/10.1016/0022-460X(77)90494-1 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [26] Pao S. P. and Seiner J. M., “Shock-Associated Noise in Supersonic Jets,” AIAA Journal, Vol. 21, No. 5, 1983, pp. 687–693. doi:https://doi.org/10.2514/3.8134 AIAJAH 0001-1452 LinkGoogle Scholar

  • [27] Panda J. and Seasholtz R. G., “Measurements of Shock Structure and Shock-Vortex Interaction in Underexpanded Jets Using Rayleigh Scattering,” Physics of Fluids A: Fluid Dynamics, Vol. 11, No. 12, 1999, pp. 3761–3777. doi:https://doi.org/10.1063/1.870247 Google Scholar

  • [28] Tam C. K. W. and Tanna H. K., “Shock Associated Noise of Supersonic Jets from Convergent-Divergent Nozzles,” Journal of Sound and Vibration, Vol. 81, No. 3, 1982, pp. 337–358. doi:https://doi.org/10.1016/0022-460X(82)90244-9 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [29] Tam C. K. W., “Stochastic Model Theory of Broadband Shock Associated Noise from Supersonic Jets,” Journal of Sound and Vibration, Vol. 116, No. 2, 1987, pp. 265–302. doi:https://doi.org/10.1016/S0022-460X(87)81303-2 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [30] Tam C. K. W., “Broadband Shock Associated Noise of Moderately Imperfectly Expanded Supersonic Jets,” Journal of Sound and Vibration, Vol. 140, No. 1, 1990, pp. 55–71. doi:https://doi.org/10.1016/0022-460X(90)90906-G JSVIAG 0022-460X CrossrefGoogle Scholar

  • [31] Kuo C. W., McLaughlin D. K., Morris P. J. and Viswanathan K., “Effects of Jet Temperature on Broadband Shock-Associated Noise,” AIAA Journal, Vol. 53, No. 6, 2015, pp. 1515–1530. doi:https://doi.org/10.2514/1.J053442 AIAJAH 0001-1452 LinkGoogle Scholar

  • [32] Vaughn A. B., Neilsen T. B., Gee K. L., Wall A. T., Downing J. M. and James M. M., “Broadband Shock-Associated Noise of a High-Performance Military Aircraft,” Journal of the Acoustical Society of America, Vol. 144, No. 3, 2018, pp. EL242–EL247. doi:https://doi.org/10.1121/1.5055392 JASMAN 0001-4966 CrossrefGoogle Scholar

  • [33] Viswanathan K., Alkislar M. B. and Czech M. J., “Characteristics of the Shock Noise Component of Jet Noise,” AIAA Journal, Vol. 48, No. 1, 2010, pp. 25–46. doi:https://doi.org/10.2514/1.38521 AIAJAH 0001-1452 LinkGoogle Scholar

  • [34] Viswanathan K., “Scaling Laws and a Method for Identifying Components of Jet Noise,” AIAA Journal, Vol. 44, No. 10, 2006, pp. 2274–2285. doi:https://doi.org/10.2514/1.18486 AIAJAH 0001-1452 LinkGoogle Scholar

  • [35] Neilsen T. B., Gee K. L. and James M. M., “Spectral Characterization in the near and Mid-Field of Military Jet Aircraft Noise,” AIAA Paper 2013-2191, June 2013. doi:https://doi.org/10.2514/6.2013-2191 LinkGoogle Scholar

  • [36] Wall A. T., Gee K. L., James M. M., Bradley K. A., McInerny S. A. and Neilsen T. B., “Near-Field Noise Measurements of a High-Performance Military Jet Aircraft,” Noise Control Engineering Journal, Vol. 60, No. 4, 2012, pp. 421–434. doi:https://doi.org/10.3397/1.3701021 NCEJD5 0736-2501 CrossrefGoogle Scholar

  • [37] Petitjean B. P. and McLaughlin D. K., “Experiments on the Nonlinear Propagation of Noise from Supersonic Jets,” AIAA Paper 2003-3127, 2003. doi:https://doi.org/10.2514/6.2003-3127 Google Scholar

  • [38] Gee K. L., Gabrielson T. B., Atchley A. A. and Sparrow V. W., “Preliminary Analysis of Nonlinearity in Military Jet Aircraft Noise Propagation,” AIAA Journal, Vol. 43, No. 6, 2005, pp. 1398–1401. doi:https://doi.org/10.2514/1.10155 AIAJAH 0001-1452 LinkGoogle Scholar

  • [39] Gee K. L., Sparrow V. W., James M. M., Downing J. M., Hobbs C. M., Gabrielson T. B. and Atchley A. A., “The Role of Nonlinear Effects in the Propagation of Noise from High-Power Jet Aircraft,” Journal of the Acoustical Society of America, Vol. 123, No. 6, 2008, pp. 4082–4093. doi:https://doi.org/10.1121/1.2903871 CrossrefGoogle Scholar

  • [40] Gee K. L., Neilsen T. B., Downing J. M., James M. M., McKinley R. L., McKinley R. C. and Wall A. T., “Near-Field Shock Formation in Noise Propagation from a High-Power Jet Aircraft,” Journal of the Acoustical Society of America, Vol. 133, No. 2, 2013, pp. EL88–EL93. doi:https://doi.org/10.1121/1.4773225 JASMAN 0001-4966 CrossrefGoogle Scholar

  • [41] Gee K. L., Neilsen T. B., Wall A. T., Downing J. M., James M. M. and McKinley R. L., “Propagation of Crackle-Containing Noise from Military Jet Aircraft,” Noise Control Engineering Journal, Vol. 64, No. 1, 2016, pp. 1–12. doi:https://doi.org/10.3397/1/376354 NCEJD5 0736-2501 CrossrefGoogle Scholar

  • [42] Seiner J. M., Ponton M. K., Jansen B. J. and Lagen N. T., “The Effects of Temperature on Supersonic Jet Noise Emission,” AIAA Paper 92-02-46, May 1992, pp. 295–307. Google Scholar

  • [43] Oertel H., “Measured Velocity Fluctuations Inside the Mixing Layer of a Supersonic Jet,” Recent Contributions to Fluid Mechanics, edited by Haas W., Springer–Verlag, Berlin, 1982, pp. 170–179. doi:https://doi.org/10.1007/978-3-642-81932-2_18 CrossrefGoogle Scholar

  • [44] Tam C. K. W. and Hu F. Q., “On the Three Families of Instability Waves of High-Speed Jets,” Journal of Fluid Mechanics, Vol. 201, April 1989, pp. 447–483. doi:https://doi.org/10.1017/S002211208900100X JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [45] Liu J., Corrigan A., Kailasanath K. and Taylor B., “Impact of the Specific Heat Ratio on Noise Generation of a High-Temperature Supersonic Jet,” AIAA Paper 2016-2125, Jan. 2016. doi:https://doi.org/10.2514/6.2016-2125 LinkGoogle Scholar

  • [46] Wall A. T., Leete K. M., Gee K. L., Neilsen T. B., James M. M. and McKinley R. L., “Preliminary Investigation of Multilobe Fighter Jet Noise Sources Using Acoustical Holography,” AIAA Paper 2017-3520, June 2017. doi:https://doi.org/10.2514/6.2017-3520 LinkGoogle Scholar

  • [47] Leete K. M., Wall A T., Gee K. L., Neilsen T. B., James M. M. and Downing J. M., “Dependence of High-Performance Military Aircraft Noise on Frequency and Engine Power,” AIAA Paper 2018-2826, June 2018. doi:https://doi.org/10.2514/6.2018-2826 LinkGoogle Scholar

  • [48] Swift H. S., Gee K. L., Neilsen T. B., Wall A. T., Downing J. M. and James M. M., “Spatiotemporal Correlation Analysis of Jet Noise from a Round-Nozzle Supersonic Aircraft,” AIAA Paper 2018-3938, 2018. doi:https://doi.org/10.2514/6.2018-3938 Google Scholar

  • [49] James M. M., Salton A. R., Downing J. M., Gee K. L., Neilsen T. B., Reichman B. O., McKinley R. L., Wall A. T. and Gallagher H. L., “Acoustic Emissions from F-35B Aircraft During Ground Run-Up,” AIAA Paper 2015-2375, June 2015. doi:https://doi.org/10.2514/6.2015-2375 Google Scholar

  • [50] Reichman B. O., Wall A. T., Gee K. L., Neilsen T. B., Downing J. M., James M. M. and McKinley R., “Modeling Far-Field Acoustical Nonlinearity from F-35B Aircraft During Ground Run-Up,” AIAA Paper 2016-1888, Jan. 2016. doi:https://doi.org/10.2514/6.2016-1888 Google Scholar

  • [51] Reichman B. O., Gee K. L., Neilsen T. B., Swift S. H., Wall A. T., Gallagher H. L., Downing J. M. and James M. M., “Acoustic Shock Formation in Noise Propagation During Ground Run-Up Operations of Military Aircraft,” AIAA Paper 2017-4043, June 2017. LinkGoogle Scholar

  • [52] Gurbatov S. N. and Rudenko O. V., “Statistical Phenomena,” Nonlinear Acoustics, edited by Hamilton M. F. and Blackstock D. T., Academic Press, New York, 1998, pp. 377–398, Chap. 13. Google Scholar

  • [53] Reichman B. O., Muhlestein M. B., Gee K. L., Neilsen T. B. and Thomas D. C., “Evolution of the Derivative Skewness for Nonlinearly Propagating Waves,” Journal of the Acoustical Society of America, Vol. 139, No. 3, 2016, pp. 1390–1403. doi:https://doi.org/10.1121/1.4944036 JASMAN 0001-4966 CrossrefGoogle Scholar

  • [54] Stout T. A., Gee K. L., Neilsen T. B., Wall A. T. and James M. M., “Source Characterization of Full-scale Jet Noise Using Acoustic Intensity,” Noise Control Engineering Journal, Vol. 63, No. 6, 2015, pp. 522–536. doi:https://doi.org/10.3397/1/376346 NCEJD5 0736-2501 CrossrefGoogle Scholar

  • [55] Liu J., Corrigan A. T., Kailasanath K., Heeb N. S. and Gutmark E. J., “Numerical Study of Noise Sources Characteristics in an Underexpanded Jet Flow,” AIAA Paper 2014-2604, 2014. LinkGoogle Scholar

  • [56] Oertel H., “Measured Velocity Fluctuations Inside the Mixing Layer of a Supersonic Jet,” Recent Contributions to Fluid Mechanics, edited by Haas W., Springer–Verlag, Berlin, 1982, pp. 170–179. doi:https://doi.org/10.1007/978-3-642-81932-2_18 CrossrefGoogle Scholar

  • [57] Tam C. K. W. and Hu F. Q., “On the Three Families of Instability Waves of High-Speed Jets,” Journal of Fluid Mechanics, Vol. 201, April 1989, pp. 447–483. doi:https://doi.org/10.1017/S002211208900100X JFLSA7 0022-1120 CrossrefGoogle Scholar