Skip to main content
Skip to article control options
No AccessRegular Articles

Localization of Swept Free-Tip Airfoil Noise Sources by Microphone Array Processing

Published Online:https://doi.org/10.2514/1.J058231

A postprocessing methodology of microphone-array results for accurate source localization and separation is described. A method constrained iterative restoration algorithm with an assumption of uncorrelated sources is used to extract quantitative spectral results for multiple noise sources identified on a wall-mounted finite-span swept and cambered airfoil tested in an open-jet aeroacoustic facility. This allows understanding of the contribution of each source in the noise generation process. The total sound pressure level is reconstructed from the individual spectra of each noise source and extrapolated in the far field to be compared with a single-microphone spectrum. The Bayesian algorithm is used to improve the comparison between reconstructed and experimental spectra because it takes into account the coherent nature of the sources. The analytical models of the source mechanisms and of their spanwise correlation are proposed as a tool to define future improvements.

References

  • [1] Roger M. and Moreau S., “Broadband Self Noise from Loaded Fan Blades,” AIAA Journal, Vol. 42, No. 3, 2004, pp. 536–544. https://doi.org/10.2514/1.9108 LinkGoogle Scholar

  • [2] Moreau S. and Roger M., “Effect of Airfoil Aerodynamic Loading on Trailing Edge Noise Sources,” AIAA Journal, Vol. 43, No. 1, 2005, pp. 41–52. https://doi.org/10.2514/1.5578 LinkGoogle Scholar

  • [3] Giez J., Vion L., Roger M. and Moreau S., “Effect of the Edge and Tip Vortex on Airfoil Self Noise and Turbulence Impingement Noise,” 22nd AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2016-2996, May 2016. https://doi.org/10.2514/6.2016-2996 LinkGoogle Scholar

  • [4] Giez J., Vion L., Roger M., Yakhina G. and Moreau S., “Effects of Intermittency and Geometry on the Turbulence Impingement Noise of a CROR Rear-Rotor Blade,” 23rd AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2016-3217, June 2017. https://doi.org/10.2514/6.2017-3217 LinkGoogle Scholar

  • [5] Wu H., Sanjose M., Moreau S. and Sandberg R. D., “Direct Numerical Simulation of the Self-Noise Radiated by the Installed Controlled-Diffusion Airfoil at Transitional Reynolds Number,” 2018 AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2018-3797, June 2018. https://doi.org/10.2514/6.2018-3797 LinkGoogle Scholar

  • [6] Johnson D. H. and Dudgeon D. E., Array Signal Processing: Concepts and Techniques, PTR Prentice–Hall, Englewood Cliffs, 1993, p. 252. Google Scholar

  • [7] Brooks T. F. and Humphreys W. M., “A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) Determined from Phased Microphone Arrays,” Journal of Sound and Vibration, Vol. 294, Nos. 4–5, 2006, pp. 856–879. https://doi.org/10.1016/j.jsv.2005.12.046 CrossrefGoogle Scholar

  • [8] Sijtsma P., “CLEAN Based on Spatial Source Coherence,” International Journal of Aeroacoustics, Vol. 6, No. 4, 2007, pp. 357–374. https://doi.org/10.1260/147547207783359459 CrossrefGoogle Scholar

  • [9] Bahr C. J., Humphreys W. M., Ernst D., Ahlefeldt T., Spehr C., Pereira A., Leclere Q., Picard C., Porteous R., Moreau D. and et al., “A Comparison of Microphone Phased Array Methods Applied to the Study of Airframe Noise in Wind Tunnel Testing,” 23rd AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2017-3718, 2017. https://doi.org/10.2514/6.2017-3718 LinkGoogle Scholar

  • [10] Sarradj E., Herold G., Sijtsma P., Merino Martinez R., Geyer T. F., Bahr C. J., Porteous R., Moreau D. and Doolan C. J., “A Microphone Array Method Benchmarking Exercise Using Synthesized Input Data,” 23rd AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2017-3719, 2017. https://doi.org/10.2514/6.2017-3719 LinkGoogle Scholar

  • [11] Geyer T., Sarradj E. and Giesler J., “Application of a Beamforming Technique to the Measurement of Airfoil Leading Edge Noise,” Advances in Acoustics and Vibration, Vol. 2012, Feb. 2012, Paper 905461. https://doi.org/10.1155/2012/905461 Google Scholar

  • [12] Shannon D. and Morris S. C., “Trailing Edge Noise Measurements Using a Large Aperture Phased Array,” International Journal of Aeroacoustics, Vol. 7, No. 2, 2008, pp. 147–176. https://doi.org/10.1260/147547208784649446 CrossrefGoogle Scholar

  • [13] Clark I. A., Alexander W. N., Devenport W., Glegg S., Jaworski J. W., Daly C. and Peake N., “Bioinspired Trailing-Edge Noise Control,” AIAA Journal, Vol. 55, No. 3, 2016, pp. 740–754. https://doi.org/10.2514/1.J055243 LinkGoogle Scholar

  • [14] Moreau J. D., Doolan J. C., Alexander N. W., Meyers W. T. and Devenport J. W., “Wall-Mounted Finite Airfoil-Noise Production and Prediction,” AIAA Journal, Vol. 54, No. 5, 2016, pp. 1637–1651. https://doi.org/10.2514/1.J054493 LinkGoogle Scholar

  • [15] Moreau D. J. and Doolan C. J., “Tonal Noise Production from a Wall-Mounted Finite Airfoil,” Journal of Sound and Vibration, Vol. 363, Feb. 2016, pp. 199–224. https://doi.org/10.1016/j.jsv.2015.11.021 CrossrefGoogle Scholar

  • [16] Brooks T. F. and Marcolini M. A., “Airfoil Tip Vortex Formation Noise,” AIAA Journal, Vol. 24, No. 2, 1986, pp. 246–252. https://doi.org/10.2514/3.9252 LinkGoogle Scholar

  • [17] Piet J. and Elias G., “Modélisation du Champ Acoustique Incident sur la Coiffe d’Ariane 5 par des Sources Simples,” Office National D’Études et de Recherches Aerospatiales Rept. TAP–94-062, Jouy-en-Josas, France, 1994. Google Scholar

  • [18] Antoni J., “A Bayesian Approach to Sound Source Reconstruction: Optimal Basis, Regularization, and Focusing,” Journal of the Acoustical Society of America, Vol. 131, No. 4, 2012, pp. 2873–2890. https://doi.org/10.1121/1.3685484 CrossrefGoogle Scholar

  • [19] Humphreys W., Shams Q., Graves S., Sealey B., Bartram S. and Comeaux T., “Application of MEMS Microphone Array Technology to Airframe Noise Measurements,” 11th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2005-3004, 2005. https://doi.org/10.2514/6.2005-3004 LinkGoogle Scholar

  • [20] Moreau S., Roger M. and Jurdic V., “Effect of Angle of Attack and Airfoil Shape on Turbulence-Interaction Noise,” 11th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2005-2973, 2005. https://doi.org/10.2514/6.2005-2973 LinkGoogle Scholar

  • [21] Paterson R. and Amiet R., “Acoustic Radiation and Surface Pressure Characteristics of an Airfoil due to Incident Turbulence,” 3rd Aeroacoustics Conference, AIAA Paper 1976-0571, 1976. https://doi.org/10.2514/6.1976-571 LinkGoogle Scholar

  • [22] Devenport W. J., Staubs J. K. and Glegg S. A., “Sound Radiation from Real Airfoils in Turbulence,” Journal of Sound and Vibration, Vol. 329, No. 17, 2010, pp. 3470–3483. https://doi.org/10.1016/j.jsv.2010.02.022 CrossrefGoogle Scholar

  • [23] Santana L. D., Christophe J., Schram C. and Desmet W., “A Rapid Distortion Theory Modified Turbulence Spectra for Semi-Analytical Airfoil Noise Prediction,” Journal of Sound and Vibration, Vol. 383, Nov. 2016, pp. 349–363. https://doi.org/10.1016/j.jsv.2016.07.026 CrossrefGoogle Scholar

  • [24] Amiet R. K., “High Frequency Thin-Airfoil Theory for Subsonic Flow,” AIAA Journal, Vol. 14, No. 8, 1976, pp. 1076–1082. https://doi.org/10.2514/3.7187 LinkGoogle Scholar

  • [25] Roger M. and Moreau S., “Back-Scattering Correction and Further Extensions of Amiet’s Trailing-Edge Noise Model. Part 1: Theory,” Journal of Sound and Vibration, Vol. 286, No. 3, 2005, pp. 477–506. https://doi.org/10.1016/j.jsv.2004.10.054 CrossrefGoogle Scholar

  • [26] Ffowcs Williams J. E. and Hawkings D. L., “Sound Generation by Turbulence and Surfaces in Arbitrary Motion,” Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, Vol. 264, No. 1151, 1969, pp. 321–342. https://doi.org/10.1098/rsta.1969.0031 CrossrefGoogle Scholar

  • [27] Quaglia M. E., Léonard T., Moreau S. and Roger M., “A 3-D Analytical Model for Orthogonal Blade-Vortex Interaction Noise,” Journal of Sound and Vibration, Vol. 399, July 2017, pp. 104–123. https://doi.org/10.1016/j.jsv.2017.03.023 CrossrefGoogle Scholar

  • [28] Moreau S. and Roger M., “Competing Broadband Noise Mechanisms in Low-Speed Axial Fans,” AIAA Journal, Vol. 45, No. 1, 2007, pp. 48–57. https://doi.org/10.2514/1.14583 LinkGoogle Scholar

  • [29] Leclère Q., Pereira A., Bailly C., Antoni J. and Picard C., “A Unified Formalism for Acoustic Imaging Based on Microphone Array Measurements,” International Journal of Aeroacoustics, Vol. 16, Nos. 4–5, 2017, pp. 431–456. https://doi.org/10.1177/1475472X17718883 CrossrefGoogle Scholar

  • [30] Merino-Martinez R., Sijtsma P., Snellen M., Ahlefeldt T., Antoni J., Bahr C., Blacodon D., Ernst D., Finez A., Funke S. and et al., “Aircraft Noise Generation and Assessment: A Review of Acoustic Imaging Methods Using Phased Microphone Arrays,” CEAS Aeronautical Journal, Vol. 10, No. 1, 2017, pp. 197–230. Google Scholar

  • [31] Mueller T. J. (ed.), Aeroacoustic Measurements, Springer–Verlag, Berlin, 2002, pp. 31–34. https://doi.org/10.1007/978-3-662-05058-3 Google Scholar

  • [32] Elias G., “Experimental Techniques for Source Location,” Lectures Series 1997–07 Aeroacoustics and Active Noise Control, von Kármán Inst. for Fluid Dynamics, Sint-Genesius-Rode, Belgium, Sept. 1997, p. 14. Google Scholar

  • [33] Sarradj E., “Three-dimensional Acoustic Source Mapping with Different Beamforming Steering Vector Formulations,” Advances in Acoustics and Vibration, Vol. 2012, June 2012, pp. 1–12. https://doi.org/10.1155/2012/292695 CrossrefGoogle Scholar

  • [34] Blacodon D. and Elias G., “Level Estimation of Extended Acoustic Sources Using an Array of Microphones,” 9th AIAA/CEAS Aeroacoustics Conference and Exhibit, AIAA Paper 2003-3199, 2003. https://doi.org/10.2514/6.2003-3199 LinkGoogle Scholar

  • [35] Yardibi T., Li J., Stoica P. and Cattafesta L. N., “Sparsity Constrained Deconvolution Approaches for Acoustic Source Mapping,” Journal of the Acoustical Society of America, Vol. 123, No. 5, 2008, pp. 2631–2642. https://doi.org/10.1121/1.2896754 CrossrefGoogle Scholar

  • [36] Elias G., “Évaluation des Retards de Propagation Acoustique Adaptée à la Soufflerie Sources CEPRA 19,” ONERA TR 38/3102 PN, Palaiseau, France, 1993. Google Scholar

  • [37] Schafer R. W., Mersereau R. M. and Richards M. A., “Constrained Iterative Restoration Algorithms,” Proceedings of the IEEE, Vol. 69, No. 4, 1981, pp. 432–450. https://doi.org/10.1109/PROC.1981.11987 Google Scholar

  • [38] Brooks T. and Humphreys W., “Extension of DAMAS Phased Array Processing for Spatial Coherence Determination (DAMAS-C),” 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), AIAA Paper 2006-2654, 2006. https://doi.org/10.2514/6.2006-2654 LinkGoogle Scholar

  • [39] Fleury V., Bulte J. and Davy R., “Determination of Acoustic Directivity from Microphone Array Measurements Using Correlated Monopoles,” 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), AIAA Paper 2008-2855, 2008. https://doi.org/10.2514/6.2008-2855 LinkGoogle Scholar

  • [40] Fleury V. and Davy R., “Large-Scale Jet Noise Testing, Reduction and Methods Validation” EXEJET”: 5. Analysis of Jet-Airfoil Interaction Noise by Microphone Array Techniques,” 20th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2014-3036, 2014. https://doi.org/10.2514/6.2014-3036 LinkGoogle Scholar

  • [41] Finez A., Picard C., Le Magueresse T., Leclere Q. and Pereira A., “Microphone Array Techniques Based on Matrix Inversion,” Von Karman Institute for fluid dynamics (VKI) Lecture Series STO-AVT-287, Sint-Genesius-Rode, Belgium, 2017. Google Scholar

  • [42] Suzuki T., “L1 Generalized Inverse Beam-Forming Algorithm Resolving Coherent/Incoherent, Distributed and Multipole Sources,” Journal of Sound and Vibration, Vol. 330, No. 24, 2011, pp. 5835–5851. https://doi.org/10.1016/j.jsv.2011.05.021 CrossrefGoogle Scholar

  • [43] Nelson P. A. and Yoon S.-H., “Estimation of Acoustic Source Strength by Inverse Methods: Part I, Conditioning of the Inverse Problem,” Journal of Sound and Vibration, Vol. 233, No. 4, 2000, pp. 639–664. https://doi.org/10.1006/jsvi.1999.2837 CrossrefGoogle Scholar

  • [44] Pereira A., Antoni J. and Leclere Q., “Empirical Bayesian Regularization of the Inverse Acoustic Problem,” Applied Acoustics, Vol. 97, Oct. 2015, pp. 11–29. https://doi.org/10.1016/j.apacoust.2015.03.008 CrossrefGoogle Scholar

  • [45] Antoni J., Le Magueresse T., Leclère Q. and Simard P., “Sparse Acoustical Holography from Iterated Bayesian Focusing,” Journal of Sound and Vibration, Vol. 446, 2019, pp. 289–325. https://doi.org/10.1016/j.jsv.2019.01.001 Google Scholar

  • [46] Le Magueresse T., Minck O. and Antoni J., “Experimental Applications of Bayesian Focusing in an Industrial Context,” Proceedings of the ISMA 2018 Conference, Katholieke Universiteit Leuven, Department of Mechanical Engineering, Leuven, Belgium, 2018, pp. 4389–4400. Google Scholar

  • [47] Quaglia M., “Méthodes de Prévision Acoustique Semi-Analytiques pour un Doublet d’Hélices Contrarotatives Isolé,” Ph.D. Thesis, Univ. of Sherbrooke, Sherbrooke, France, 2017. Google Scholar

  • [48] Bampanis G. and Roger M., “Three-Dimensional Effects in the Reduction of Turbulence-Impingement Noise of Aerofoils by Wavy Leading Edges,” Euronoise 2018 Crete, EAA European Acoustics Assoc., 2018, pp. 97–104. Google Scholar