Skip to main content
Skip to article control options
No AccessRegular Articles

Predicting Wind Turbine Wake Breakdown Using a Free Vortex Wake Code

Published Online:https://doi.org/10.2514/1.J058308

When modeling wind turbine wake recovery, the location of wake breakdown plays a crucial role. The breakdown is caused by a rapid deformation of the helical near-wake vortex structure that is triggered by the pairing of successive blade tip vortices. In this paper, the capability of a cost-efficient lifting-line free vortex wake code to accurately predict the wake breakdown location and its underlying mechanisms is demonstrated and validated against simulation results of a large-eddy simulation solver and additional data from the literature. Furthermore, this work investigates a technique to accelerate the breakdown of wind turbine wakes. The onset of wake breakdown is caused by perturbations that travel along the helical structure of the wake and grow via mutual-induction interaction between neighboring vortex filaments. To accelerate wake breakdown, the blade tip vortices are perturbed at different frequencies via trailing-edge flaps located in the outboard region of the rotor blades. Through the evaluation of the perturbation growth rates and the analysis of velocity fields, it is shown that for a multi-megawatt wind turbine operating in a turbulent wind field, the wake breakdown position can be significantly affected by a moderate flap actuation amplitude if excited at an appropriate frequency.

References

  • [1] Fleming P., Annoni J., Shah J. J., Wang L, Ananthan S., Thang Z., Hutchings K., Wang P., Chen W. and Chen L., “Field Test of Wake Steering at an Offshore Wind Farm,” Wind Energy Science, Vol. 2, No. 1, 2017, pp. 229–239. https://doi.org/10.5194/wes-2-229-2017 CrossrefGoogle Scholar

  • [2] Feng J. and Shen W. Z., “Solving the Wind Farm Layout Optimization Problem Using Random Search Algorithm,” Renewable Energy, Vol. 78, June 2015, pp. 182–192. https://doi.org/10.1016/j.renene.2015.01.005 CrossrefGoogle Scholar

  • [3] Madsen H. A., Bergami L. and Rasmussen F., “New Aerodynamics Rotor Concepts Specifically for Very Large Offshore Wind Turbines,” Innwind TR D2.11, Europe, 2013. Google Scholar

  • [4] Ajormand Kermani A., Andersen S. J., Sørensen J. N. and Shen W. Z., “Analysis of Turbulent Wake Behind a Wind Turbine,” Proceedings of the 2013 International Conference on Aerodynamics of Offshore Wind Energy Systems and Wakes (ICOWES2013), Technical Univ. of Denmark, Lyngby, Denmark, June 2013, pp. 1–16. Google Scholar

  • [5] Marten D., Lennie M., Pechlivanoglou G., Nayeri C. D. and Paschereit C. O., “Implementation, Optimization and Validation of a Nonlinear Lifting Line Free Vortex Wake Module Within the Wind Turbine Simulation Code QBlade,” Journal of Engineering for Gas Turbines and Power, Vol. 138, No. 7, 2016, Paper 072601. https://doi.org/10.1115/1.4031872 Google Scholar

  • [6] Shapiro C. R., Gayme D. F. and Meneveau C., “Modelling Yawed Wind Turbine Wakes: A Lifting Line Approach,” Journal of Fluid Mechanics, Vol. 841, April 2018, Paper R1. https://doi.org/10.1017/jfm.2018.75 CrossrefGoogle Scholar

  • [7] Jeon M., Lee S., Kim T. and Lee S., “Wake Influence on Dynamic Load Characteristics of Offshore Floating Wind Turbines,” AIAA Journal, Vol. 54, No. 11, 2016, pp. 3535–3545. https://doi.org/10.2514/1.J054584 LinkGoogle Scholar

  • [8] Branlard E., “Analysis of Wind Turbine Aerodynamics and Aeroelasticity Using Vortex-Based Methods,” Ph.D. Thesis, DTU Wind Energy Phd-0052(EN), 2015, p. 219. Google Scholar

  • [9] Joukowsky N. E., “Vortex Theory of Screw Propeller, I,” Trudy Otdeleniya Fizicheskikh Nauk Obshchestva Lubitelei Estestvoznaniya, Vol. 16, No. 1, 1912, pp. 1–31 (in Russian); also Théorie Tourbillonnaire de l’Hélice Propulsive, Gauthier–Villars, Paris, 1929, pp. 1–47 (in French). Google Scholar

  • [10] Crow S. C., “Stability Theory for a Pair of Trailing Vortices,” AIAA Journal, Vol. 8, No. 12, 1970, pp. 2172–2179. https://doi.org/10.2514/3.6083 LinkGoogle Scholar

  • [11] Widnall S. E., “The Stability of a Helical Vortex Filament,” Journal of Fluid Mechanics, Vol. 54, No. 4, 1972, pp. 641–663. https://doi.org/10.1017/S0022112072000928. CrossrefGoogle Scholar

  • [12] Gupta B. P. and Loewy R. G., “Theoretical Analysis of the Aerodynamic Stability of Multiple Interdigitated Helical Vortices,” AIAA Journal, Vol. 12, No. 10, 1974, pp. 1381–1387. https://doi.org/10.2514/3.49493 LinkGoogle Scholar

  • [13] Leishman G., Bhagwat M. J. and Ananthan S., “The Vortex Ring State as a Spatially and Temporally Developing Wake Instability,” Journal of the American Helicopter Society, Vol. 49, No. 2, 2004, pp. 160–175. https://doi.org/10.4050/JAHS.49.160 CrossrefGoogle Scholar

  • [14] Ivanell S., Mikkelsen R., Sorensen J. N. and Henningson D., “Stability Analysis of the Tip Vortices of a Wind Turbine,” Wind Energy, Vol. 13, No. 8, 2010, pp. 705–715. https://doi.org/10.1002/we.391 CrossrefGoogle Scholar

  • [15] Sarmast S., Dadfar R., Mikkelsen R. F., Schlatter P., Ivanell S., Sørensen J. N. and Henningson D. S., “Mutual Inductance Instability of the Tip Vortices Behind a Wind Turbine,” Journal of Fluid Mechanics, Vol. 755, Sept. 2014, pp. 705–731. https://doi.org/10.1017/jfm.2014.326 CrossrefGoogle Scholar

  • [16] Quaranta H. U., Bolnot H. and Leweke T., “Long-Wave Instability of a Helical Vortex,” Journal of Fluid Mechanics, Vol. 780, Oct. 2015, pp. 687–716. https://doi.org/10.1017/jfm.2015.479 CrossrefGoogle Scholar

  • [17] Carrión M., Woodgate M., Steijl R., Barakos G. N., Gomez-Iradi S. and Munduate X., “Understanding Wind-Turbine Wake Breakdown Using Computational Fluid Dynamics,” AIAA Journal, Vol. 53, No. 3, 2015, pp. 588–602. https://doi.org/10.2514/1.J053196 LinkGoogle Scholar

  • [18] Schepers J. G. and Snel H., “Final Report of IEA Task 29, MexNext (Phase I): Analysis of Mexico Wind Tunnel Measurements,” Energy Research Center of the Netherlands TR-ECN-E-12-004, Petten, The Netherlands, Feb. 2012. Google Scholar

  • [19] Nayeri C. N., Vey S., Marten D., Pechlivanoglou G., Paschereit C. O., Huang X., Meinke M., Schöder W., Kampers G., Hölling M., Peinke J., Fischer A., Lutz T., Krämer E., Cordes U., Hufnagel K., Schiffmann K., Spiegelberg H. and Tropea C., “Collaborative Research on Wind Turbine Load Control under Realistic Turbulent Inflow Conditions,” 12th German Wind Energy Conference, UL DEWI, May 2015. Google Scholar

  • [20] Pechlivanoglou G., Fischer J., Eisele O., Vey S., Nayeri C. and Paschereit C. O., “Development of a Medium Scale Research Hawt for Inflow and Aerodynamic Research in the Tu Berlin Wind Tunnel,” UL DEWI, 2015. Google Scholar

  • [21] Klein A. C., Bartholomay S., Marten D., Lutz T., Pechlivanoglou G., Nayeri N. C., Paschereit C. O. and Krämer E., “About the Suitability of Different Numerical Methods to Reproduce Model Wind Turbine Measurements in a Wind Tunnel with a High Blockage Ratio,” Wind Energy Science, Vol. 3, June 2018, pp. 349–460. Google Scholar

  • [22] Marten D., Bartholomay S., Pechlivanoglou G., Nayeri C. N. and Paschereit C. O., “Numerical and Experimental Investigation of Trailing Edge Flap Performance on a Model Wind Turbine,” 2018 Wind Energy Symposium, AIAA SciTech Forum, AIAA Paper 2018-1246, 2018. https://doi.org/10.2514/6.2018-1246 Google Scholar

  • [23] Barlas T. K. and van Kuik G. A. M., “Review of State of the Art in Smart Rotor Control Research for Wind Turbines,” Progress in Aerospace Sciences, Vol. 46, No. 1, 2010, pp. 1–27. https://doi.org/10.1016/j.paerosci.2009.08.002. CrossrefGoogle Scholar

  • [24] Barlas T., “Active Aerodynamic Load Control on Wind Turbine Blades: Aeroservoelastic Modelling and Wind Tunnel Experiments,” Ph.D. Thesis, Delft Univ. of Technology, Delft, The Netherlands, 2011. Google Scholar

  • [25] Huang X., Alavi Moghadam S. M., Meysonnat P. S., Meinke M. and Schröder W., “Numerical Analysis of the Effect of Flaps on the Tip Vortex of a Wind Turbine Blade,” International Journal of Heat and Fluid Flow, Vol. 77, June 2019, pp. 336–351. https://doi.org/10.1016/j.ijheatfluidflow.2019.05.004 CrossrefGoogle Scholar

  • [26] Van Garrel A., “Development of a Wind Turbine Aerodynamics Simulation Module,” Tech. Rept., ECN, Petten, Netherlands, 2003. Google Scholar

  • [27] Bergami L. and Gaunaa M., “ATEFlap Aerodynamic Model, a Dynamic Stall Model Including the Effects of Trailing Edge Flap Deflection,” Tech. Rept., DTU, Copenhagen, Denmark, 2012. Google Scholar

  • [28] Boris J. P., Grinstein F. F., Oran E. S. and Kolbe R. L., “New Insights into Large Eddy Simulation,” Fluid Dynamics Research Vol. 10, Nos. 4–6, 1992, pp. 199–228. https://doi.org/10.1016/0169-5983(92)90023-P CrossrefGoogle Scholar

  • [29] Liou M. S. and Steffen C. J., “A New Flux Splitting Scheme,” Journal of Computational Physics Vol. 107, No. 1, 1993, pp. 23–39. https://doi.org/10.1006/jcph.1993.1122 CrossrefGoogle Scholar

  • [30] Meinke M., Schröder W., Krause E. and Rister T., “A Comparison of Second and Sixth-Order Methods for Large-Eddy Simulations,” Computers and Fluids, Vol. 31, Nos. 4–7, 2002, pp. 695–718. Google Scholar

  • [31] König D., Koh S. R., Meinke M. and Schröder W., “Two-Step Simulation of Slat Noise,” Computers and Fluids, Vol. 39, No. 3, 2010, pp. 512–524. Google Scholar

  • [32] Feldhusen-Hoffmann A., Statnikov V., Klaas M. and Schröder W., “Investigation of Shock-Acoustic-Wave Interaction in Transonic Flow,” Experiments in Fluids, Vol. 59, No. 1, 2018, Paper 15. https://doi.org/10.1007/s00348-017-2466-z Google Scholar

  • [33] Xu H. and Ryckaert J. P., “On the Coupling Between the Intrinsic Angular Momentum of Molecules and the Fluid Vorticity,” Microscopic Simulations of Complex Flows, edited by Mareschal M., Vol. 236, NATO ASI Series (Series B: Physics), Springer, Berlin, 1990. Google Scholar

  • [34] Sørensen J. N. and Shen W. Z., “Numerical Modelling of Wind Turbine Wakes,” Journal of Fluids Engineering, Vol. 124, No. 1, 2002, pp. 393–399 Google Scholar

  • [35] Lignarolo L. E. M., Ragni D., Scarano F., Simao Ferreira C. J. and van Bussel G. J. W., “Tip-Vortex Instability and Turbulent Mixing in Wind-Turbine Wakes,” Journal of Fluid Mechanics, Vol. 781, Oct. 2015, pp. 467–493. https://doi.org/10.1017/jfm.2015.470 CrossrefGoogle Scholar

  • [36] Jonkman J., Butterfield S., Musial W. and Scott G., “Definition of a 5-MW Reference Wind Turbine for Offshore System Development,” National Renewable Energy Laboratory (NREL) TP-500-38060, Boulder, Colorado, 2009. CrossrefGoogle Scholar

  • [37] Veers P. S., “Three-Dimensional Wind Simulation,” Sandia National Labs. TR SAND88–0152, UC–261, Livermore, CA, 1988. Google Scholar

  • [38] International Electrotechnical Commission, “IEC 61400-1, Wind Turbines—Part 1,” 2005. Google Scholar

  • [39] Sørensen J. N., Mikkelsen R., Sarmast S., Ivanell S. and Henningson D., “Determination of Wind Turbine Near-Wake Length Based on Stability Analysis,” Journal of Physics: Conference Series, Vol. 524, No. 1, 2014, Paper 012155. https://doi.org/10.1088/1742-6596/524/1/012155 Google Scholar

  • [40] Okulov V. L. and Sørensen J. N., “Stability of Helical Tip Vortices in a Rotor Far Wake,” Journal of Fluid Mechanics, Vol. 576, April 2007, pp. 1–25. https://doi.org/10.1017/S0022112006004228 CrossrefGoogle Scholar