Skip to main content
Skip to article control options
No AccessExpress Articles

Experimental Observation of Negative Temperature Dependence in iso-Octane Burning Velocities

Published Online:https://doi.org/10.2514/1.J058530

The average burning velocities S¯b of premixed, spherically expanding iso-octane flames are reported for flame radii from 0.75 to 1.75 cm between 400 and 900 K, near 1 atm. Measurements are performed in lean mixtures (0.9 equivalence ratio) using a helium-enriched oxidizer (18% oxygen, 41% nitrogen, and 41% helium) to inhibit thermodiffusive instabilities at high temperatures. A shock tube is used to heat the unburned gas to elevated temperatures. Consistently smooth flames with weak S¯b temperature dependence are seen between 500 and 580 K. Above 580 K and extending to 740 K, flames exhibit internal structure and surface wrinkling, and a very strong temperature dependence is observed. From 740 to 800 K, a regime of negative S¯b temperature dependence is observed. Above 800 K, the measured values of S¯b again assume a positive temperature dependence. Although direct numerical simulation studies published in the literature have predicted negative temperature coefficient (NTC) behavior in flames influenced by low-temperature chemistry and cool flames, it is believed that this work represents the first experimental observation of NTC behavior in burning velocity measurements.

References

  • [1] Miller R. S. and Foster J. W., “Survey of Turbulent Combustion Models for Large-Eddy Simulations of Propulsive Flowfields,” AIAA Journal, Vol. 54, No. 10, 2016, pp. 2930–2946. doi:https://doi.org/10.2514/1.J054740 LinkGoogle Scholar

  • [2] Kalghatgi G., Bradley D., Andrae J. and Harrison A., “The Nature of ‘Superknock’ and Its Origins in SI Engines,” IMechE’s Internal Combustion Engines: Performance, Fuel Economy and Emissions Conference, Inst. of Mechanical Engineers, Chandos Publ., Oxford, U.K., 2009, pp. 259–269. Google Scholar

  • [3] Mehl M., Pitz W., Sjöberg M. and Dec J. E., “Detailed Kinetic Modeling of Low-Temperature Heat Release for PRF Fuels in an HCCI Engine,” SAE TP 2009-01-1806, Warrendale, PA, 2009. doi:https://doi.org/10.4271/2009-01-1806 Google Scholar

  • [4] Mehl M., Pitz W. J., Westbrook C. K. and Curran H. J., “Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions,” Proceedings of the Combustion Institute, Vol. 33, No. 1, 2011, pp. 193–200. doi:https://doi.org/10.1016/j.proci.2010.05.027 CrossrefGoogle Scholar

  • [5] Liang W. and Law C. K., “Theory of First-Stage Ignition Delay in Hydrocarbon NTC Chemistry,” Combustion and Flame, Vol. 188, Feb. 2018, pp. 162–169. doi:https://doi.org/10.1016/j.combustflame.2017.10.003 CrossrefGoogle Scholar

  • [6] Ferris A. M., Susa A. J., Davidson D. F. and Hanson R. K., “High-Temperature Laminar Flame Speed Measurements in a Shock Tube,” Combustion and Flame, Vol. 205, July 2019, pp. 241–252. doi:https://doi.org/10.1016/j.combustflame.2019.04.007 CrossrefGoogle Scholar

  • [7] Law C. K., Sung C. J., Wang H. and Lu T. F., “Development of Comprehensive Detailed and Reduced Reaction Mechanisms for Combustion Modeling,” AIAA Journal, Vol. 41, No. 9, 2003, pp. 1629–1646. doi:https://doi.org/10.2514/2.7289 LinkGoogle Scholar

  • [8] Law C. K., “Fuel Options for Next-Generation Chemical Propulsion,” AIAA Journal, Vol. 50, No. 1, 2012, pp. 19–36. doi:https://doi.org/10.2514/1.J051328 LinkGoogle Scholar

  • [9] Konnov A. A., Mohammad A., Kishore V. R., Kim N. I., Prathap C. and Kumar S., “A Comprehensive Review of Measurements and Data Analysis of Laminar Burning Velocities for Various Fuel+ Air Mixtures,” Progress in Energy and Combustion Science, Vol. 68, Sept. 2018, pp. 197–267. doi:https://doi.org/10.1016/j.pecs.2018.05.003 CrossrefGoogle Scholar

  • [10] Bradley D., Hicks R., Lawes M., Sheppard C. and Woolley R., “The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-Octane–Air and Iso-Octane–n-Heptane–Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb,” Combustion and Flame, Vol. 115, Nos. 1–2, 1998, pp. 126–144. doi:https://doi.org/10.1016/S0010-2180(97)00349-0 CrossrefGoogle Scholar

  • [11] Kumar K., Freeh J., Sung C. and Huang Y., “Laminar Flame Speeds of Preheated Iso-Octane/O2/N2 and n-Heptane/O2/N2 Mixtures,” Journal of Propulsion and Power, Vol. 23, No. 2, 2007, pp. 428–436. doi:https://doi.org/10.2514/1.24391 LinkGoogle Scholar

  • [12] Sileghem L., Alekseev V., Vancoillie J., Geem K. V., Nilsson E., Verhelst S. and Konnov A., “Laminar Burning Velocity of Gasoline and the Gasoline Surrogate Components Iso-Octane, n-Heptane and Toluene,” Fuel, Vol. 112, Oct. 2013, pp. 355–365. doi:https://doi.org/10.1016/j.fuel.2013.05.049 CrossrefGoogle Scholar

  • [13] Lewis B. and Von Elbe G., “Determination of the Speed of Flames and the Temperature Distribution in a Spherical Bomb from Time-Pressure Explosion Records,” Journal of Chemical Physics, Vol. 2, No. 5, 1934, pp. 283–290. doi:https://doi.org/10.1063/1.1749464 Google Scholar

  • [14] Bagdanavicius A., Bowen P. J., Syred N., Kay P., Crayford A., Sims G. and Wood J., “Burning Velocities of Alternative Gaseous Fuels at Elevated Temperature and Pressure,” AIAA Journal, Vol. 48, No. 2, 2010, pp. 317–329. doi:https://doi.org/10.2514/1.43225 LinkGoogle Scholar

  • [15] Reuter C. B., Won S. H. and Ju Y., “Effect of Low-Temperature Reactivity on the Turbulent Combustion of n-Octane/iso-Octane Mixtures in a Reactor-Assisted Turbulent Slot Burner,” 55th AIAA Aerospace Sciences Meeting, AIAA Paper  2017-1781, 2017. doi:https://doi.org/10.2514/6.2017-1781 LinkGoogle Scholar

  • [16] Martz J. B., Lavoie G. A., Im H. G., Middleton R. J., Babajimopoulos A. and Assanis D. N., “The Propagation of a Laminar Reaction Front During End-Gas Auto-Ignition,” Combustion and Flame, Vol. 159, No. 6, 2012, pp. 2077–2086. doi:https://doi.org/10.1016/j.combustflame.2012.01.011 CrossrefGoogle Scholar

  • [17] Ju Y., Sun W., Burke M. P., Gou X. and Chen Z., “Multi-Timescale Modeling of Ignition and Flame Regimes of n-Heptane-Air Mixtures Near Spark Assisted Homogeneous Charge Compression Ignition Conditions,” Proceedings of the Combustion Institute, Vol. 33, No. 1, 2011, pp. 1245–1251. doi:https://doi.org/10.1016/j.proci.2010.06.110 Google Scholar

  • [18] Pan J., Wei H., Shu G., Chen Z. and Zhao P., “The Role of Low Temperature Chemistry in Combustion Mode Development Under Elevated Pressures,” Combustion and Flame, Vol. 174, Dec. 2016, pp. 179–193. doi:https://doi.org/10.1016/j.combustflame.2016.09.012 CrossrefGoogle Scholar

  • [19] Krisman A., Hawkes E. R. and Chen J. H., “The Structure and Propagation of Laminar Flames Under Autoignitive Conditions,” Combustion and Flame, Vol. 188, Feb. 2018, pp. 399–411. doi:https://doi.org/10.1016/j.combustflame.2017.09.012 CrossrefGoogle Scholar

  • [20] Ansari A., Jayachandran J. and Egolfopoulos F. N., “Parameters Influencing the Burning Rate of Laminar Flames Propagating into a Reacting Mixture,” Proceedings of the Combustion Institute, Vol. 37, No. 2, 2018, pp. 1513–1520. doi:https://doi.org/10.1016/j.proci.2018.05.163 Google Scholar

  • [21] Zhang W., Faqih M., Gou X. and Chen Z., “Numerical Study on the Transient Evolution of a Premixed Cool Flame,” Combustion and Flame, Vol. 187, Jan. 2018, pp. 129–136. doi:https://doi.org/10.1016/j.combustflame.2017.09.009 Google Scholar

  • [22] Lin H., Zhao P. and Ge H., “A Computational Study on Laminar Flame Propagation in Mixtures with Non-Zero Reaction Progress,” SAE TP 2019-01-0946, Warrendale, PA, 2019. doi:https://doi.org/10.4271/2019-01-0946 Google Scholar

  • [23] Campbell M. F., Tulgestke A. M., Davidson D. F. and Hanson R. K., “A Second-Generation Constrained Reaction Volume Shock Tube,” Review of Scientific Instruments, Vol. 85, No. 5, 2014, Paper 055108. doi:https://doi.org/10.1063/1.4875056 CrossrefGoogle Scholar

  • [24] Campbell M. F., Owen K. G., Davidson D. F. and Hanson R. K., “Dependence of Calculated Postshock Thermodynamic Variables on Vibrational Equilibrium and Input Uncertainty,” Journal of Thermophysics and Heat Transfer, Vol. 31, No. 3, 2017, pp. 586–608. doi:https://doi.org/10.2514/1.T4952 LinkGoogle Scholar

  • [25] Gaydon A. G. and Hurle I. R., The Shock Tube in High-Temperature Chemical Physics, Chapman and Hall, Boca Raton, FL, 1963. Google Scholar

  • [26] Phuoc T. X. and White F. P., “Laser-Induced Spark Ignition of CH4/Air Mixtures,” Combustion and Flame, Vol. 119, No. 3, 1999, pp. 203–216. doi:https://doi.org/10.1016/S0010-2180(99)00051-6 CrossrefGoogle Scholar

  • [27] Troutman V. A., Strand C. L., Campbell M. F., Tulgestke A. M., Miller V. A., Davidson D. F. and Hanson R. K., “High-Speed OH* Chemiluminescence Imaging of Ignition Through a Shock Tube End-Wall,” Applied Physics B: Lasers and Optics, Vol. 122, No. 3, 2016, pp. 0–7. doi:https://doi.org/10.1007/s00340-016-6326-y Google Scholar

  • [28] Turner M. A., Parajuli P., Paschal T., Kulatilaka W. D. and Petersen E. L., “Laminar Flame Speed Measurements from Chemiluminescence of OH* and CH* in CH4-Air Flames,” AIAA Scitech 2019 Forum, AIAA Paper  2019-2363, 2019. doi:https://doi.org/10.2514/6.2019-2363 Google Scholar

  • [29] Paschal T., Parajuli P., Turner M. A., Petersen E. L. and Kulatilaka W. D., “High-Speed OH* and CH* Chemiluminescence Imaging and OH Planar Laser-Induced Fluorescence (PLIF) in Spherically Expanding Flames,” AIAA Scitech 2019 Forum, AIAA Paper  2019-0574, 2019. doi:https://doi.org/10.2514/6.2019-0574 LinkGoogle Scholar

  • [30] Rozenchan G., Zhu D. L., Law C. K. and Tse S., “Outward Propagation, Burning Velocities, and Chemical Effects of Methane Flames up to 60 atm,” Proceedings of the Combustion Institute, Vol. 29, No. 2, 2002, pp. 1461–1470. doi:https://doi.org/10.1016/S1540-7489(02)80179-1 CrossrefGoogle Scholar

  • [31] Xiouris C., Ye T., Jayachandran J. and Egolfopoulos F. N., “Laminar Flame Speeds Under Engine-Relevant Conditions: Uncertainty Quantification and Minimization in Spherically Expanding Flame Experiments,” Combustion and Flame, Vol. 163, Jan. 2016, pp. 270–283. doi:https://doi.org/10.1016/j.combustflame.2015.10.003 CrossrefGoogle Scholar

  • [32] Otsu N., “A Threshold Selection Method from Gray-Level Histograms,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, 1979, pp. 62–66. doi:https://doi.org/10.1109/TSMC.1979.4310076 CrossrefGoogle Scholar

  • [33] Burke M. P., Chen Z., Ju Y. and Dryer F. L., “Effect of Cylindrical Confinement on the Determination of Laminar Flame Speeds Using Outwardly Propagating Flames,” Combustion and Flame, Vol. 156, No. 4, 2009, pp. 771–779. doi:https://doi.org/10.1016/j.combustflame.2009.01.013 CrossrefGoogle Scholar

  • [34] Zhao P., Liang W., Deng S. and Law C. K., “Initiation and Propagation of Laminar Premixed Cool Flames,” Fuel, Vol. 166, Feb. 2016, pp. 477–487. doi:https://doi.org/10.1016/j.fuel.2015.11.025 CrossrefGoogle Scholar

  • [35] Ju Y., “On the Propagation Limits and Speeds of Premixed Cool Flames at Elevated Pressures,” Combustion and Flame, Vol. 178, April 2017, pp. 61–69. doi:https://doi.org/10.1016/j.combustflame.2017.01.006 CrossrefGoogle Scholar

  • [36] Susa A., Ferris A., Davidson D. and Hanson R., “Experimental Measurement of Laminar Burning Velocity of n-Heptane at Variable Extents of Reactions in a Shock Tube,” Proceedings of the 32nd International Symposium on Shock Waves (ISSW32), Vol. 32, 2019, Paper 0149.doi:https://doi.org/10.3850/978-981-11-2730-4_0149-cd Google Scholar

  • [37] Campbell M. F., Parise T., Tulgestke A. M., Spearrin R. M., Davidson D. F. and Hanson R. K., “Strategies for Obtaining Long Constant-Pressure Test Times in Shock Tubes,” Shock Waves, Vol. 25, No. 6, 2015, pp. 651–665. doi:https://doi.org/10.1007/s00193-015-0596-x CrossrefGoogle Scholar

  • [38] Kee R., Grcar J., Smooke M., Miller J. and Meeks E., “Premix: A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames,” Sandia National Labs. Rept. SAND85-8240, Livermore, CA, 1985. Google Scholar