Skip to main content
Skip to article control options
No AccessRegular Articles

Large-Eddy Simulations of a Reactive Solid Rocket Motor Plume

Published Online:https://doi.org/10.2514/1.J058601

Large-eddy simulation (LES) of a solid rocket motor plume is performed with a reduced chemical scheme that is able to describe the postcombustion occurring in the multispecies supersonic plume between the unburnt exhaust and ambient air. The reduced chemical scheme is first evaluated on laminar flame cases in conditions representative of those encountered in the LES of the reactive plume. The reduced mechanism is then applied to three-dimensional LES, which provides a more detailed representation of the structure of the solid rocket motor exhaust plume compared with previous studies based on one-dimensional box models or three-dimensional Reynolds-averaged Navier–Stokes simulations. The present chemical model does not include alumina particles, whose effects at the plume scale are still uncertain, yet the simulation offers a prediction of the chlorine species distribution, which is known to produce strong interactions with stratospheric ozone, eventually leading to ozone depletion.

References

  • [1] Molina M. J. and Rowland F. S., “Stratospheric Sink for Chlorofluoromethanes: Chlorine Atom-Catalysed Destruction of Ozone,” Nature, Vol. 249, No. 5460, 1974, pp. 810–812. https://doi.org/10.1038/249810a0 CrossrefGoogle Scholar

  • [2] Rowland F. S. and Molina M. J., “Chlorofluoromethanes in the Environment,” Reviews of Geophysics, Vol. 13, No. 1, 1975, pp. 1–35. https://doi.org/10.1029/RG013i001p00001 Google Scholar

  • [3] Denison M. R., Lamb J. L., Bjorndahl W. D., Wong E. Y. and Lohn P. D., “Solid Rocket Exhaust in the Stratosphere: Plume Diffusion and Chemical Reactions,” Journal of Spacecraft and Rockets, Vol. 31, No. 3, 1994, pp. 435–442. https://doi.org/10.2514/3.26457 LinkGoogle Scholar

  • [4] Zittel P. F., “Computer Model Predictions of the Local Effects of Large, Solid-Fuel Rocket Motors on Stratospheric Ozone,” The Aerospace Corp., TR-94(4231)-9, El Segundo, CA, Sept. 1994. Google Scholar

  • [5] Beiting E., “Characteristics of Alumina Particles from Solid Rocket Motor Exhaust in the Stratosphere,” The Aerospace Corp., TR-95(5231)-8, El Segundo, CA, Sept. 1995. Google Scholar

  • [6] Brady B. B., Martin L. R. and Lang V. I., “Effects of Launch Vehicle Emissions in the Stratosphere,” Journal of Spacecraft and Rockets, Vol. 34, No. 6, 1997, pp. 774–779. https://doi.org/10.2514/2.3285 LinkGoogle Scholar

  • [7] Ross M. N., Benbrook J. R., Sheldon W. R., Zittel P. F. and McKenzie D. L., “Observation of Stratospheric Ozone Depletion in Rocket Exhaust Plumes,” Nature, Vol. 390, No. 6655, 1997, pp. 62–64. https://doi.org/10.1038/36318 CrossrefGoogle Scholar

  • [8] Ross M. N., Ballenthin J. O., Gosselin R. B., Meads R. F., Zittel P. and Benbrook J. R., “In-Situ Measurement of Cl2 and O3 in a Stratospheric Solid Rocket Motor Exhaust Plume,” Geophysical Research Letters, Vol. 24, No. 14, 1997, pp. 1755–1758. https://doi.org/10.1029/97GL01592 CrossrefGoogle Scholar

  • [9] Danilin M. Y., Popp P. J., Herman R. L., Ko M. K. W., Ross M. N., Kolb C. E., Fahey D. W., Avallone L. M., Toohey D. W. and Ridley B. A., et al., “Quantifying Uptake of HNO3 and H2O by Alumina Particles in Athena-2 Rocket Plume,” Journal of Geophysical Research, Vol. 108, No. D4, 2003, p. 4141.  10.1029/2002 JD002601 CrossrefGoogle Scholar

  • [10] Martin L. R., “Possible Effect of the Chlorine Oxide Dimer on Transient Ozone Loss in Rocket Plumes,” The Aerospace Corp., TR-94(4231)-1, El Segundo, CA, March 1994. Google Scholar

  • [11] World Meteorological Organization (WMO), Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project, Rept. 50, 572, Geneva, Switzerland, 2007. Google Scholar

  • [12] Koch A. D., Bauer C., Dumont E., Minutolo F., Sippel M., Grenard P., Ordonneau G., Winkler H., Guénot L. and Linck C., et al., “Multidisciplinary Approach for Assessing the Atmospheric Impact of Launchers,” 4th CEAS Air Space Conference, Council of European Aerospace Societies (CEAS), Linköping, 2013. Google Scholar

  • [13] Grenard P., Bauer C., Koch A. and Winkler H., “Evaluation of Rocket Launches’ Effect on Climate,” ODAS 2013–13th ONERA-DLR Aerospace Symposium, Office National d’Etudes et de Recherches Aérospatiales (ONERA), Palaiseau, France, 2013. Google Scholar

  • [14] Bauer C. B., Koch A., Minutolo F. and Grenard P., “Engineering Model for Rocket Exhaust Plumes Verified by CFD Results,” 29th International Symposium on Space Technology and Science, Japan Society for Aeronautical and Space Sciences (JSASS), Nagoya-Aichi, Japan, 2013, Paper 2013-e-07. Google Scholar

  • [15] Pergament H. S., “Standardized Plume Flowfield Model SPF-III, Vol. II, Program User’s Manual,” Propulsion Science and Technology Inc., Rept. PST TR-11, Princeton, NJ, 1992. Google Scholar

  • [16] Bogey C. and Bailly C., “Turbulence and Energy Budget in a Self-Preserving Round Jet: Direct Evaluation Using Large Eddy Simulation,” Journal of Fluid Mechanics, Vol. 627, May 2009, pp. 129–160. https://doi.org/10.1017/S0022112009005801 CrossrefGoogle Scholar

  • [17] Dauptain A., Gicquel L. Y. M. and Moreau S., “Large Eddy Simulation of Supersonic Impinging Jets,” AIAA Journal, Vol. 50, No. 7, 2012, pp. 1560–1574. https://doi.org/10.2514/1.J051470 LinkGoogle Scholar

  • [18] Vuorinen V., Yu J., Tirunagari S., Kaario O., Larmi M., Duwig C. and Boersma B. J., “Large-Eddy Simulation of Highly Underexpanded Transient Gas Jets,” Physics of Fluids, Vol. 25, No. 1, 2013, Paper 016101. https://doi.org/10.1063/1.4772192 CrossrefGoogle Scholar

  • [19] Bres G. A., Ham F. E., Nichols J. W. and Lele S. K., “Unstructured Large-Eddy Simulations of Supersonic Jets,” AIAA Journal, Vol. 55, No. 4, 2017, pp. 1164–1184. https://doi.org/10.2514/1.J055084 LinkGoogle Scholar

  • [20] Domingo P., Vervisch L. and Veynante D., “Large-Eddy Simulation of a Lifted Methane Jet Flame in a Vitiated Coflow,” Combustion and Flame, Vol. 152, No. 3, 2008, pp. 415–432. https://doi.org/10.1016/j.combustflame.2007.09.002 CrossrefGoogle Scholar

  • [21] Boivin P., Dauptain A., Jiménez C. and Cuenot B., “Simulation of a Supersonic Hydrogen-Air Autoignition-Stabilized Flame Using Reduced Chemistry,” Combustion and Flame, Vol. 159, No. 4, 2012, pp. 1779–1790. https://doi.org/10.1016/j.combustflame.2011.12.012 CrossrefGoogle Scholar

  • [22] Gomberg R. I. and Stewart R. B., “A Computer Simulation of the Afterburning Processes Occurring Within Solid Rocket Motor Plumes in the Troposphere,” NASA TN D-8303, 1976. Google Scholar

  • [23] Poubeau A., Paoli R., Dauptain A., Duchaine F. and Wang G., “Large-Eddy Simulations of a Single-Species Solid Rocket Booster Jet,” AIAA Journal, Vol. 53, No. 6, 2015, pp. 1477–1491. https://doi.org/10.2514/1.J053361 LinkGoogle Scholar

  • [24] Poubeau A., Paoli R. and Cariolle D., “Evaluation of Afterburning Chemistry in Solid-Rocket Motor Jets Using an Off-Line Model,” Journal of Spacecraft and Rockets, Vol. 53, No. 2, 2016, pp. 380–388. https://doi.org/10.2514/1.A33311 LinkGoogle Scholar

  • [25] Schönfeld T. and Rudgyard M., “Steady and Unsteady Flow Simulations Using the Hybrid Flow Solver AVBP,” AIAA Journal, Vol. 37, No. 11, 1999, pp. 1378–1385. https://doi.org/10.2514/2.636 LinkGoogle Scholar

  • [26] Germano M., Piomelli U., Moin P. and Cabot W. H., “A Dynamic Subgrid-Scale Eddy Viscosity Model,” Physics of Fluids A, Vol. 3, No. 7, 1991, pp. 1760–1765. https://doi.org/10.1063/1.857955 CrossrefGoogle Scholar

  • [27] Lilly D. K., “A Proposed Modification of the Germano Subgrid-Scale Closure Method,” Physics of Fluids A, Vol. 4, No. 3, 1992, pp. 633–635. https://doi.org/10.1063/1.858280 CrossrefGoogle Scholar

  • [28] Goodwin D., Malaya N., Moffat H. and Speth R., “Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes,” Version 2.1.0, 2013, https://code.google.com/p/cantera/. Google Scholar

  • [29] Jameson A., Schmidt W. and Turkel E., “Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes,” 14th Fluid and Plasma Dynamics Conference, AIAA Paper  1981-1259, 1981. LinkGoogle Scholar

  • [30] Poubeau A., “Simulation of Emissions from a Solid Propellant Engine: Towards Multi-Scale Modeling of the Atmospheric Impact of Launchers,” Ph.D. Thesis, Univ. de Toulouse, Toulouse, France, 2015. Google Scholar

  • [31] Poinsot T. and Lele S., “Boundary Conditions for Direct Simulations of Compressible Viscous Flows,” Journal of Computational Physics, Vol. 101, No. 1, 1992, pp. 104–129. https://doi.org/10.1016/0021-9991(92)90046-2 CrossrefGoogle Scholar

  • [32] Wang G., Papadogiannis D., Duchaine F., Gourdain N. and Gicquel L. Y. M., “Towards Massively Parallel Large Eddy Simulation of Turbine Stages,” ASME TURBO EXPO 2013 Gas Turbine Technical Congress & Exposition, ASME, New York, 2013. https://doi.org/10.1115/GT2013-94852 Google Scholar

  • [33] Wang G., Duchaine F., Papadogiannis D., Duran I., Moreau S. and Gicquel L., “An Overset Grid Method for Large Eddy Simulation of Turbomachinery Stages,” Journal of Computational Physics, Vol. 274, Oct. 2014, pp. 333–355. https://doi.org/10.1016/j.jcp.2014.06.006 CrossrefGoogle Scholar

  • [34] Bonhomme A., “Numerical Study of Laminar and Turbulent Flames Propagating in a Fan-Stirred Vessel,” Ph.D. Thesis, INP Toulouse, Toulouse, France, 2014. Google Scholar

  • [35] Gordon S. and McBride B., “Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications,” NASA Reference Publication 1311, 1994. Google Scholar

  • [36] Rosario N., “Simulation of a Solid Rocket Exhaust System,” Master Thesis, Instituto Superior Técnico Lisboa, Nov. 2012. Google Scholar

  • [37] Popp P. J., Ridley B. A., Neuman J. A., Avallone L. M., Toohey D. W., Zittel P. F., Schmid O., Herman R. L., Gao R. S. and Northway M. J., et al., “The Emission and Chemistry of Reactive Nitrogen Species in the Plume of an Athena II Solid-Fuel Rocket Motor,” Geophysical Research Letters, Vol. 29, No. 18, 2002, pp. 34-1–34-4. https://doi.org/10.1029/2002GL015197 CrossrefGoogle Scholar

  • [38] Najjar F. M., Ferry J. P., Haselbacher A. and Balachandar S., “Simulations of Solid-Propellant Rockets: Effects of Aluminum Droplet Size Distribution,” Journal of Spacecraft and Rockets, Vol. 43, No. 6, 2006, pp. 1258–1270. https://doi.org/10.2514/1.17326 LinkGoogle Scholar

  • [39] Zhang J., Jackson T. L., Buckmaster J. and Najjar F., “Erosion in Solid-Propellant Rocket Motor Nozzles with Unsteady Nonuniform Inlet Conditions,” Journal of Propulsion and Power, Vol. 27, No. 3, 2011, pp. 642–649. https://doi.org/10.2514/1.47158 LinkGoogle Scholar

  • [40] Brady B. B. and Martin L. R., “Modeling Solid Rocket Booster Exhaust Plumes in the Stratosphere with SURFACE CHEMKIN,” The Aerospace Corp., TR-95(5231)-9, El Segundo, CA, 1995. Google Scholar

  • [41] Lohn P. D., Wong E. P., Smith T. W., Edwards J. R. and Pilson D., “Rocket Exhaust Impact on Stratospheric Ozone,” TRW Space & Electronics Group, Redondo Beach, CA, Sept. 1999. Google Scholar

  • [42] Ross M. N., Toohey D. W., Rawlins W. T., Richard E. C., Kelly K. K., Tuck A. F., Proffitt M. H., Hagen D. E., Hopkins A. R. and Whitefield P. D., et al., “Observation of Stratospheric Ozone Depletion Associated with Delta II Rocket Emissions,” Geophysical Research Letters, Vol. 27, No. 15, 2000, pp. 2209–2212. https://doi.org/10.1029/1999GL011159 CrossrefGoogle Scholar

  • [43] Stewart R. B. and Gomberg R. I., “The Production of Nitric Oxide in the Troposphere as a Result of Solid-Rocket-Motor Afterburning,” NASA TN D-8137, 1976. Google Scholar

  • [44] Smith G. P., Golden D. M., Frenklach M., Moriarty N. W., Eiteneer B., Goldenberg M., Thomas Bowman C., Hanson R. K., Song S. and Gardiner W. C., et al., “GRI-Mech 3.0,” 1999, http://www.me.berkeley.edu/gri_mech/. Google Scholar

  • [45] Saxena P. and Williams F. A., “Testing a Small Detailed Chemical-Kinetic Mechanism for the Combustion of Hydrogen and Carbon Monoxide,” Combustion and Flame, Vol. 145, Nos. 1–2, 2006, pp. 316–323. https://doi.org/10.1016/j.combustflame.2005.10.004 CrossrefGoogle Scholar

  • [46] Jensen D. E. and Jones G. A., “Reaction Rate Coefficients for Flame Calculations,” Combustion and Flame, Vol. 32, Jan. 1978, pp. 1–34. https://doi.org/10.1016/0010-2180(78)90078-0 CrossrefGoogle Scholar

  • [47] Baulch D. L., Duxbury J., Grant S. J. and Montague D. C., “Evaluated Kinetic Data for High Temperature Reactions, Vol. 4, : Homogeneous Gas Phase Rections of Halogen- and Cyanide- Containing Species,” Journal of Physical and Chemical Reference Data, Vol. 10, No. 1, 1981, pp. 1–56. https://doi.org/10.1063/1.555639 CrossrefGoogle Scholar

  • [48] Leone D. M. and Turns S. R., “Active Chlorine and Nitric Oxide Formation from Chemical Rocket Plume Afterburning,” 32nd Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meeting, AIAA Paper  1994-788, 1994. LinkGoogle Scholar

  • [49] Sánchez A. L. and Williams F. A., “Recent Advances in Understanding of Flammability Characteristics of Hydrogen,” Progress in Energy and Combustion Science, Vol. 41, April 2014, pp. 1–55. https://doi.org/10.1016/j.pecs.2013.10.002 CrossrefGoogle Scholar

  • [50] Boivin P., Jiménez C., Sánchez A. and Williams F., “A Four-Step Reduced Mechanism for Syngas Combustion,” Combustion and Flame, Vol. 158, No. 6, 2011, pp. 1059–1063. https://doi.org/10.1016/j.combustflame.2010.10.023 CrossrefGoogle Scholar

  • [51] Pepiot-Dejardins P. and Cuenot B., “An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms,” Combustion and Flame, Vol. 154, Nos. 1–2, 2008, pp. 67–81. https://doi.org/10.1016/j.combustflame.2007.10.020 Google Scholar

  • [52] Franzelli B., Riber E., Sanjose M. and Poinsot T., “A Two-Step Chemical Scheme for Kerosene-Air Premixed Flames,” Combustion and Flame, Vol. 157, No. 7, 2010, pp. 1364–1373. https://doi.org/10.1016/j.combustflame.2010.03.014 CrossrefGoogle Scholar

  • [53] Felden A., Riber E. and Cuenot B., “Impact of Direct Integration of Analytically Reduced Chemistry in LES of a Sooting Swirled Non-Premixed Combustor,” Combustion and Flame, Vol. 191, May 2018, pp. 270–286. https://doi.org/10.1016/j.combustflame.2018.01.005 CrossrefGoogle Scholar

  • [54] Poinsot T. and Veynante D., Theoretical and Numerical Combustion, Philadelphia, 2005, Chap. 6. Google Scholar

  • [55] Bilger R. W., Starner S. H. and Kee R. J., “On Reduced Mechanisms for Methane-Air Combustion in Nonpremixed Flames,” Combustion and Flame, Vol. 80, No. 2, 1990, pp. 135–149. https://doi.org/10.1016/0010-2180(90)90122-8 CrossrefGoogle Scholar

  • [56] Yamashita H., Shimada M. and Takeno T., “A Numerical Study on Flame Stability at the Transition Point of Jet Diffusion Flames,” Proceedings of the Combustion Institute, Vol. 26, No. 1, 1996, pp. 27–34. https://doi.org/10.1016/S0082-0784(96)80196-2 CrossrefGoogle Scholar

  • [57] Shum-Kivan F., “Simulation des Grandes Echelles de Flammes de Spray et Modélisation de la Combustion Non-Prémélangée,” Ph.D. Thesis, INP Toulouse, Toulouse, France, 2017. Google Scholar

  • [58] Chen S., Gojon R. and Mihaescu M., “High-Temperature Effects on Aerodynamic and Acoustics Characteristics of a Rectangular Supersonic Jet,” AIAA/CEAS Aeroacoustics Conference, AIAA, Reston, VA, 2018, pp. 1–0; also, AIAA Paper  2018-3303, 2018. Google Scholar

  • [59] Burke M. L. and Zittel P. F., “Laboratory Generation of Free Chlorine from HCl Under Stratospheric After Burning Conditions,” Combustion and Flame, Vol. 112, Nos. 1–2, 1998, pp. 210–220. https://doi.org/10.1016/S0010-2180(97)81769-5 CrossrefGoogle Scholar