Skip to main content
Skip to article control options
No AccessRegular Articles

Resolvent Analysis of Compressible Laminar and Turbulent Cavity Flows

Published Online:https://doi.org/10.2514/1.J058633

The present work demonstrates the use of a resolvent analysis to obtain physical insights for open-cavity flows. A resolvent analysis identifies the flow response to harmonic forcing, given a steady base state, in terms of the response and forcing modes and the amplification gain. The response and forcing modes reveal the spatial structures associated with this amplification process. In this study, a resolvent analysis is performed on both laminar and turbulent flows over a rectangular cavity with a length-to-depth ratio of L/D=6 at a freestream Mach number of M=0.6 in a spanwise periodic setting. Based on the dominant instability of the base state, a discount parameter is introduced to a resolvent analysis to examine the harmonic characteristics over a finite-time window. First, the underlying flow physics is uncovered and the findings are interpreted from laminar flow at ReD=502. These findings from laminar flow are extended to a more practical cavity flow example at a much higher Reynolds number of ReD=104. The features of response and forcing modes from the turbulent cavity flow are similar to the spatial structures from the laminar analysis. It is further found that the large amplification of energy in the flow response is associated with the high frequency (StL2.5) for turbulent flow, whereas the flow is more responsive to the low-frequency (StL0.4) excitation in the laminar case. These findings from the resolvent analysis provide valuable insights for flow control studies with regard to parameter selection and the placement of actuators and sensors.

References

  • [1] Holmes P., Lumley J. L. and Berkooz G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Univ. Press, New York, 1996. CrossrefGoogle Scholar

  • [2] Schmid P. J., “Dynamic Mode Decomposition of Numerical and Experimental Data,” Journal of Fluid Mechanics, Vol. 656, Aug. 2010, pp. 5–28. https://doi.org/10.1017/S0022112010001217 CrossrefGoogle Scholar

  • [3] Theofilis V., “Global Linear Instability,” Annual Review of Fluid Mechanics, Vol. 43, No. 1, 2011, pp. 319–352. https://doi.org/10.1146/annurev-fluid-122109-160705 CrossrefGoogle Scholar

  • [4] Trefethen L. N., Trefethen A. E., Reddy S. C. and Driscoll T. A., “Hydrodynamic Stability Without Eigenvalues,” Science, Vol. 261, No. 5121, 1993, pp. 578–584. https://doi.org/10.1126/science.261.5121.578 CrossrefGoogle Scholar

  • [5] Taira K., Brunton S. L., Dawson S., Rowley C. W., Colonius T., McKeon B. J., Schmidt O. T., Gordeyev S., Theofilis V. and Ukeiley L. S., “Modal Analysis of Fluid Flows: An Overview,” AIAA Journal, Vol. 55, No. 12, 2017, pp. 4013–4041. https://doi.org/10.2514/1.J056060 LinkGoogle Scholar

  • [6] Taira K., Hemati M. S., Brunton S. L., Sun Y., Duraisamy K., Bagheri S., Dawson S. T. M. and Yeh C.-A., “Modal Analysis of Fluid Flows: Applications and Outlook,” AIAA Journal (advance online publication). Google Scholar

  • [7] Jovanovic M. R. and Bamieh B., “Componentwise Energy Amplification in Channel Flows,” Journal of Fluid Mechanics, Vol. 534, July 2005, pp. 145–183. https://doi.org/10.1017/S0022112005004295 CrossrefGoogle Scholar

  • [8] Bagheri S., Hoepffner J., Schmid P. J. and Henningson D. S., “Input-Output Analysis and Control Design Applied to a Linear Model of Spatially Developing Flows,” Applied Mechanics Reviews, Vol. 62, No. 2, 2009, Paper 020803. https://doi.org/10.1115/1.3077635 CrossrefGoogle Scholar

  • [9] McKeon B. and Sharma A., “A Critical-Layer Framework for Turbulent Pipe Flow,” Journal of Fluid Mechanics, Vol. 658, Sept. 2010, pp. 336–382. https://doi.org/10.1017/S002211201000176X CrossrefGoogle Scholar

  • [10] Luhar M., Sharma A. S. and McKeon B. J., “Opposition Control Within the Resolvent Analysis Framework,” Journal of Fluid Mechanics, Vol. 749, June 2014, pp. 597–626. https://doi.org/10.1017/jfm.2014.209 CrossrefGoogle Scholar

  • [11] Yeh C.-A. and Taira K., “Resolvent-Analysis-Based Design of Airfoil Separation Control,” Journal of Fluid Mechanics, Vol. 867, May 2019, pp. 572–610. https://doi.org/10.1017/jfm.2019.163 CrossrefGoogle Scholar

  • [12] Jovanović M. R., “Modeling, Analysis, and Control of Spatially Distributed Systems,” Ph.D. Thesis, Univ. of California at Santa Barbara, Santa Barbara, CA, 2004. Google Scholar

  • [13] Farrell B. F. and Ioannou P. J., “Variance Maintained by Stochastic Forcing of Nonnormal Dynamical Systems Associated with Linearly Stable Shear Flows,” Physical Review Letters, Vol. 72, No. 8, 1994, pp. 1188–1191. https://doi.org/10.1103/PhysRevLett.72.1188 Google Scholar

  • [14] Lawson S. J. and Barakos G. N., “Review of Numerical Simulations for High-Speed, Turbulent Cavity Flows,” Progress in Aerospace Sciences, Vol. 47, No. 3, 2011, pp. 186–216. https://doi.org/10.1016/j.paerosci.2010.11.002 CrossrefGoogle Scholar

  • [15] Qadri U. A. and Schmid P. J., “Frequency Selection Mechanisms in the Flow of a Laminar Boundary Layer over a Shallow Cavity,” Physical Review Fluids, Vol. 2, Jan. 2017, Paper 013902. Google Scholar

  • [16] Liu Q., Sun Y., Cattafesta L. N., Ukeiley L. S. and Taira K., “Resolvent Analysis of Compressible Flows over a Long Rectangular Cavity,” AIAA Paper 2018-0588, 2018. https://doi.org/10.2514/6.2018-0588 Google Scholar

  • [17] Brès G. A. and Colonius T., “Three-Dimensional Instabilities in Compressible Flow over Open Cavities,” Journal of Fluid Mechanics, Vol. 599, March 2008, pp. 309–339. https://doi.org/10.1017/S0022112007009925 CrossrefGoogle Scholar

  • [18] Meseguer-Garrido F., de Vicente J., Valero E. and Theofilis V., “On Linear Instability Mechanisms in Incompressible Open Cavity Flow,” Journal of Fluid Mechanics, Vol. 752, Aug. 2014, pp. 219–236. https://doi.org/10.1017/jfm.2014.253 CrossrefGoogle Scholar

  • [19] Citro V., Giannetti F., Brandt L. and Luchini P., “Linear Three-Dimensional Global and Asymptotic Stability Analysis of Incompressible Open Cavity Flow,” Journal of Fluid Mechanics, Vol. 768, April 2015, pp. 113–140. https://doi.org/10.1017/jfm.2015.72 CrossrefGoogle Scholar

  • [20] Liu Q., Gómez F. and Theofilis V., “Linear Instability Analysis of Low-Re Incompressible Flow Over a Long Rectangular Finite-Span Open Cavity,” Journal of Fluid Mechanics, Vol. 799, July 2016, Paper R2. CrossrefGoogle Scholar

  • [21] Sun Y., Taira K., Cattafesta L. N. and Ukeiley L. S., “Biglobal Stability Analysis of Compressible Open Cavity Flow,” Journal of Fluid Mechanics, Vol. 826, Sept. 2017, pp. 270–301. https://doi.org/10.1017/jfm.2017.416 CrossrefGoogle Scholar

  • [22] Zhang Y., Sun Y., Arora N., Cattafesta L. N., Taira K. and Ukeiley L. S., “Suppression of Cavity Flow Oscillations via Three-Dimensional Steady Blowing,” AIAA Journal, Vol. 57, No. 1, 2019, pp. 90–105. https://doi.org/10.2514/1.J057012 LinkGoogle Scholar

  • [23] Sun Y., Liu Q., Cattafesta L. N., Ukeiley L. S. and Taira K., “Effects of Sidewalls and Leading-Edge Blowing on Flows over Long Rectangular Cavities,” AIAA Journal, Vol. 57, No. 1, 2019, pp. 106–119. https://doi.org/10.2514/1.J057413 LinkGoogle Scholar

  • [24] Åkervik E., Brandt L., Henningson D. S., Hœpffner J., Marxen O. and Schlatter P., “Steady Solutions of the Navier-Stokes Equations by Selective Frequency Damping,” Physics of Fluids, Vol. 18, No. 6, 2006, Paper 068102. https://doi.org/10.1063/1.2211705 CrossrefGoogle Scholar

  • [25] Tuckerman L. and Barkley D., “Bifurcation Analysis for Timesteppers,” Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, Vol. 19, edited by Doedel E. and Tuckerman L. S., Springer, New York, 2000, pp. 453–466. CrossrefGoogle Scholar

  • [26] Schmid P. J. and Henningson D. S., Stability and Transition in Shear Flows, Springer, New York, 2001. CrossrefGoogle Scholar

  • [27] Chu B.-T., “On the Energy Transfer to Small Disturbances in Fluid Flow (Part I),” Acta Mechanica, Vol. 1, No. 3, 1965, pp. 215–234. https://doi.org/10.1007/BF01387235 CrossrefGoogle Scholar

  • [28] Towne A., Schmidt O. T. and Colonius T., “Spectral Proper Orthogonal Decomposition and its Relationship to Dynamic Mode Decomposition and Resolvent Analysis,” Journal of Fluid Mechanics, Vol. 847, July 2018, pp. 821–867. https://doi.org/10.1017/jfm.2018.283 CrossrefGoogle Scholar

  • [29] Khalighi Y., Ham F., Moin P., Lele S. and Schlinker R. H., “Noise Prediction of Pressure-Mismatched Jets Using Unstructured Large Eddy Simulation,” Proceedings of the ASME Turbo Expo, American Society of Mechanical Engineers Paper  GT2011-46548, Fairfield, NJ, 2011, pp. 381–387. Google Scholar

  • [30] Khalighi Y., Nichols J. W., Ham F., Lele S. K. and Moin P., “Unstructured Large Eddy Simulation for Prediction of Noise Issued from Turbulent Jets in Various Configurations,” AIAA Paper 2011-2886, 2011. https://doi.org/10.2514/6.2011-2886 LinkGoogle Scholar

  • [31] Brès G. A., Ham F. E., Nichols J. W. and Lele S. K., “Unstructured Large-Eddy Simulations of Supersonic Jets,” AIAA Journal, Vol. 55, No. 4, 2017, pp. 1164–1184. LinkGoogle Scholar

  • [32] Béchara W., Bailly C., Lafon P. and Candel S. M., “Stochastic Approach to Noise Modeling for Free Turbulent Flows,” AIAA Journal, Vol. 32, No. 3, 1994, pp. 455–463. https://doi.org/10.2514/3.12008 LinkGoogle Scholar

  • [33] Franck J. A. and Colonius T., “Compressible Large Eddy Simulation of Separation Control on a Wall-Mounted Hump,” AIAA Journal, Vol. 48, No. 6, 2010, pp. 1098–1107. https://doi.org/10.2514/1.44756 LinkGoogle Scholar

  • [34] Sun Y., Taira K., Cattafesta L. N. and Ukeiley L. S., “Spanwise Effects on Instabilities of Compressible Flow over a Long Rectangular Cavity,” Theoretical and Computational Fluid Dynamics, Vol. 31, Nos. 5–6, 2017, pp. 555–565. https://doi.org/10.1007/s00162-016-0412-y CrossrefGoogle Scholar

  • [35] Lehoucq R. B., Sorensen D. C. and Yang C., ARPACK Users' Guide, Soc. for Industrial and Applied Mathematics, 1998. https://doi.org/10.1137/1.9780898719628 Google Scholar

  • [36] Bergamo L. F., Gennaro E. M., Theofilis V. and Medeiros M. A. F., “Compressible Modes in a Square Lid-Driven Cavity,” Aerospace Science and Technology, Vol. 44, July–Aug. 2015, pp. 125–134. https://doi.org/10.1016/j.ast.2015.03.010 CrossrefGoogle Scholar

  • [37] Hunt J. C. R., Wray A. A. and Moin P., “Eddies, Streams, and Convergence Zones in Turbulent Flows,” Proceedings of the Summer Program, Center of Turbulence Research, 1988, pp. 193–208, https://adsabs.harvard.edu/abs/1988stun.proc..193H. Google Scholar

  • [38] Rossiter J. E., “Wind-Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds,” Aeronautical Research Council Reports and Memoranda TR 3438, Great Britain, 1964. Google Scholar

  • [39] Heller H. and Bliss D., “The Physical Mechanism of Flow-Induced Pressure Fluctuations in Cavities and Concepts for Their Suppression,” AIAA Paper 1975-0491, 1975. LinkGoogle Scholar

  • [40] Rowley C. W., Colonius T. and Basu A. J., “On Self-Sustained Oscillations in Two-Dimensional Compressible Flow over Rectangular Cavities,” Journal of Fluid Mechanics, Vol. 455, March 2002, pp. 315–346. https://doi.org/10.1017/S0022112001007534 CrossrefGoogle Scholar

  • [41] Sipp D. and Lebedev A., “Global Stability of Base and Mean Flows: A General Approach and Its Applications to Cylinder and Open Cavity Flows,” Journal of Fluid Mechanics, Vol. 593, Dec. 2007, pp. 333–358. https://doi.org/10.1017/S0022112007008907 CrossrefGoogle Scholar

  • [42] Turton S. E., Tuckerman L. S. and Barkley D., “Prediction of Frequencies in Thermosolutal Convection from Mean Flows,” Physical Review E, Vol. 91, No. 4, 2015, Paper 043009. https://doi.org/10.1103/PhysRevE.91.043009 Google Scholar

  • [43] Trefethen L. N. and Embree M., Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton Univ. Press, Princeton, NJ, 2005. CrossrefGoogle Scholar

  • [44] Arratia C., “Non-Modal Instability Mechanisms in Stratified and Homogeneous Shear Flows,” Ph.D. Thesis, Ecole Polytechnique, Palaiseau, France, 2011. Google Scholar

  • [45] Brown G. L. and Roshko A., “On Density Effects and Large Structures in Turbulent Mixing Layers,” Journal of Fluid Mechanics, Vol. 64, No. 4, 1974, pp. 775–816. https://doi.org/10.1017/S002211207400190X CrossrefGoogle Scholar

  • [46] Liu Q., Sun Y., Yeh C.-A. and Taira K., “Unsteady Control of Supersonic Turbulent Cavity Flow Guided by Resolvent Analysis,” (to be published). Google Scholar