Skip to main content
Skip to article control options
No AccessRegular Articles

Multifidelity Method for Locating Aeroelastic Flutter Boundaries

Published Online:https://doi.org/10.2514/1.J058663

This paper introduces a multifidelity method that can produce accurate estimates of the flutter boundary at a reduced cost by combining information from low- and high-fidelity aeroelastic models. Estimating the flutter boundary in the presence of nonlinear aerodynamic phenomena is challenging because high-fidelity aeroelastic models are expensive to evaluate, and flutter analysis requires many model evaluations. On the other hand, relatively inexpensive approximate aeroelastic models (low-fidelity models) exist and are routinely applied to reduce the cost of estimating flutter, albeit with lower accuracy. The multifidelity method introduced here uses an active learning algorithm to leverage information from low-fidelity models. A multifidelity statistical surrogate is used to fit damping coefficient estimates computed with different aeroelastic models. This surrogate is used to estimate the uncertainty in the prediction of the flutter boundary, which drives the selection of new evaluations. The effectiveness of the multifidelity method is demonstrated by estimating the aeroelastic flutter boundary of a typical section model at a cost 85% lower when compared with the bisection method. Four aeroelastic models are considered in this example: three models (including the high-fidelity model) use a computational fluid dynamics solver based on the Euler equations, whereas one model uses a two-dimensional doublet-lattice method.

References

  • [1] Liu F., Cai J., Zhu Y., Tsai H. M. and Wong A. S. F., “Calculation of Wing Flutter by a Coupled Fluid-Structure Method,” Journal of Aircraft, Vol. 38, No. 2, 2001, pp. 334–342. https://doi.org/10.2514/2.2766 LinkGoogle Scholar

  • [2] Shang J. S., “Three Decades of Accomplishments in Computational Fluid Dynamics,” Progress in Aerospace Sciences, Vol. 40, No. 3, 2004, pp. 173–197. https://doi.org/10.1016/j.paerosci.2004.04.001 CrossrefGoogle Scholar

  • [3] Farhat C., “CFD on Moving Grids: From Theory to Realistic Flutter, Maneuvering, and Multidisciplinary Optimization,” International Journal of Computational Fluid Dynamics, Vol. 19, No. 8, 2005, pp. 595–603. https://doi.org/10.1080/10618560500510579 CrossrefGoogle Scholar

  • [4] Datta A. D., Sitaraman J., Chopra I. and Baeder J. D., “Consistent Rational-Function Approximation for Unsteady Aerodynamics,” Journal of Aircraft, Vol. 28, No. 9, 1991, pp. 545–552. https://doi.org/10.2514/3.46062 LinkGoogle Scholar

  • [5] Bazilevs Y., Calo V. M., Hughes T. J. R. and Zhang Y., “Isogeometric Fluid-Structure Interaction: Theory, Algorithms, and Computations,” Computational Mechanics, Vol. 43, No. 1, 2008, pp. 3–37. https://doi.org/10.1007/s00466-008-0315-x CrossrefGoogle Scholar

  • [6] Hou G., Wang J. and Layton A., “Numerical Methods for Fluid-Structure Interaction—A Review,” Communications in Computational Physics, Vol. 12, No. 2, 2012, pp. 337–377. https://doi.org/10.4208/cicp.291210.290411s CrossrefGoogle Scholar

  • [7] Smith M. J., Lim J. W., van der Wall B. G., Baeder J. D., Biedron R. T., Boyd D. D., Jayaraman B., Jung S. N. and Min B.-Y., “The HART II International Workshop: An Assessment of the State of the Art in CFD/CSD Prediction,” CEAS Aeronautical Journal, Vol. 4, No. 4, 2013, pp. 345–372. https://doi.org/10.1007/s13272-013-0078-8 CrossrefGoogle Scholar

  • [8] Heeg J., “Overview and Lessons Learned from the Aeroelastic Prediction Workshop,” 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2013-1798, April 2013. https://doi.org/10.2514/6.2013-1798 LinkGoogle Scholar

  • [9] Heeg J., Chwalowski P., Raveh D. E., Jirasek A. and Dalenbring M., “Overview and Data Comparisons from the 2nd Aeroelastic Prediction Workshop,” 34th AIAA Applied Aerodynamics Conference (AIAA Aviation Forum), AIAA Paper  2016-3121, June 2016. https://doi.org/10.2514/6.2016-3121 LinkGoogle Scholar

  • [10] Farhat C., “CFD-Based Nonlinear Computational Aeroelasticity,” Encyclopedia of Computational Mechanics, edited by Stein E., Borst R. and Hughes T. J. R., 2nd ed., American Cancer Soc., 2017, pp. 1–21. https://doi.org/10.1002/9781119176817.ecm2063 CrossrefGoogle Scholar

  • [11] Miller B. A. and McNamara J. J., “Efficient Fluid-Thermal-Structural Time Marching with Computational Fluid Dynamics,” Journal of Aircraft, Vol. 56, No. 9, 2018, pp. 3610–3621. https://doi.org/10.2514/1.J056572 AbstractGoogle Scholar

  • [12] Albano E. and Rodden W. P., “A Doublet-Lattice Method for Calculating Lift Distributions on Oscillating Surfaces in Subsonic Flows,” AIAA Journal, Vol. 7, No. 2, 1969, pp. 279–285. https://doi.org/10.2514/3.5086 LinkGoogle Scholar

  • [13] Rodden W. P., Giesing J. P. and Kálmán T. P., “Refinement of the Nonplanar Aspects of the Subsonic Doublet-Lattice Lifting Surface Method,” Journal of Aircraft, Vol. 9, No. 1, 1972, pp. 69–73. https://doi.org/10.2514/3.44322 LinkGoogle Scholar

  • [14] Giesing J. P., Kálmán T. P. and Rodden W. P., “Subsonic Steady and Oscillatory Aerodynamics for Multiple Interfering Wings and Bodies,” Journal of Aircraft, Vol. 9, No. 10, 1972, pp. 693–702. https://doi.org/10.2514/3.59066 LinkGoogle Scholar

  • [15] Marques A., Lam R. and Willcox K., “Contour Location via Entropy Reduction Leveraging Multiple Information Sources,” Advances in Neural Information Processing Systems 31, edited by Bengio S., Wallach H., Larochelle H., Grauman K., Cesa-Bianchi N. and Garnett R., Curran Associates, Inc., Red Hook, NY, 2018, pp. 5222–5232. Google Scholar

  • [16] Dribusch C., Missoum S. and Beran P., “A Multifidelity Approach for the Construction of Explicit Decision Boundaries: Application to Aeroelasticity,” Structural and Multidisciplinary Optimization, Vol. 42, No. 5, 2010, pp. 693–705. https://doi.org/10.1007/s00158-010-0516-8 CrossrefGoogle Scholar

  • [17] Timme S. and Badcock K. J., “Transonic Aeroelastic Instability Searches Using Sampling and Aerodynamic Model Hierarchy,” AIAA Journal, Vol. 49, No. 6, 2011, pp. 1191–1201. https://doi.org/10.2514/1.J050509 LinkGoogle Scholar

  • [18] Thelen A. S., Leifsson L. T. and Beran P. S., “Aeroelastic Flutter Prediction Using Multi-Fidelity Modeling of the Aerodynamic Influence Coefficients,” AIAA SciTech 2019 Forum, AIAA Paper  2019-0609, Jan. 2019. https://doi.org/10.2514/6.2019-0609 LinkGoogle Scholar

  • [19] Roger K. L., “Airplane Math Modeling Methods for Active Control Design,” AGARD CP-228, Aug. 1977. Google Scholar

  • [20] Abel I., “An Analytical Technique for Predicting the Characteristics of a Flexible Wing Equipped with an Active Flutter-Suppression System and Comparison with Wind-Tunnel Data,” NASA TP-1367, Feb. 1979. Google Scholar

  • [21] Eversman W. and Tewari A., “Consistent Rational-Function Approximation for Unsteady Aerodynamics,” Journal of Aircraft, Vol. 28, No. 9, 1991, pp. 545–552. https://doi.org/10.2514/3.46062 LinkGoogle Scholar

  • [22] Marques A. N. and Azevedo J. L. F., “Numerical Calculation of Impulsive and Indicial Aerodynamic Responses Using Computational Aerodynamics Techniques,” Journal of Aircraft, Vol. 45, No. 4, 2008, pp. 1112–1135. https://doi.org/10.2514/1.32151 LinkGoogle Scholar

  • [23] Marques A. N. and Azevedo J. L. F., “A z-Transform Discrete-Time State Space Formulation for Aeroelastic Stability Analysis,” Journal of Aircraft, Vol. 45, No. 5, 2008, pp. 1564–1578. https://doi.org/10.2514/1.32561 LinkGoogle Scholar

  • [24] Chen P. C., Zhang Z. and Eli L., “Design-Oriented Computational Fluid Dynamics-Based Unsteady Aerodynamics for Flight-Vehicle Aeroelastic Shape Optimization,” Journal of Aircraft, Vol. 53, No. 12, 2015, pp. 3603–3619. https://doi.org/10.2514/1.J054024 AbstractGoogle Scholar

  • [25] Opgenoord M. M. J., Drela M. and Willcox K. E., “Physics-Based Low-Order Model for Transonic Flutter Prediction,” AIAA Journal, Vol. 56, No. 4, 2018, pp. 1519–1531. https://doi.org/10.2514/1.J056710 LinkGoogle Scholar

  • [26] Lucia D. J., Beran P. S. and Silva W. A., “Reduced-Order Modeling: New Approaches for Computational Physics,” Progress in Aerospace Sciences, Vol. 40, No. 1, 2004, pp. 51–117. https://doi.org/10.1016/j.paerosci.2003.12.001 CrossrefGoogle Scholar

  • [27] Benner P., Gugercin S. and Willcox K., “A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems,” SIAM Review, Vol. 57, No. 4, 2015, pp. 483–531. https://doi.org/10.1137/130932715 CrossrefGoogle Scholar

  • [28] Sirovich L., “Turbulence and the Dynamics of Coherent Structures, Part 1: Coherent Structures,” Quarterly of Applied Mathematics, Vol. 45, No. 3, 1987, pp. 561–571. https://doi.org/10.1090/qam/1987-45-03 CrossrefGoogle Scholar

  • [29] Berkooz G., Holmes P. and Lumley J. L., “The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows,” Annual Review of Fluid Mechanics, Vol. 25, No. 1, 1993, pp. 539–575. https://doi.org/10.1146/annurev.fl.25.010193.002543 CrossrefGoogle Scholar

  • [30] Dowell E. H. and Hall K. C., “Modeling of Fluid–Structure Interaction,” Annual Review of Fluid Mechanics, Vol. 33, No. 1, 2001, pp. 445–490. https://doi.org/10.1146/annurev.fluid.33.1.445 CrossrefGoogle Scholar

  • [31] Thomas J. P., Dowell E. H. and Hall K. C., “Modeling Viscous Transonic Limit Cycle Oscillation Behavior Using a Harmonic Balance Approach,” Journal of Aircraft, Vol. 41, No. 6, 2004, pp. 1266–1274. https://doi.org/10.2514/1.9839 LinkGoogle Scholar

  • [32] Silva W. A., “Application of Nonlinear Systems Theory to Transonic Unsteady Aerodynamic Responses,” Journal of Aircraft, Vol. 30, No. 5, 1993, pp. 660–668. https://doi.org/10.2514/3.46395 LinkGoogle Scholar

  • [33] Missoum S., Dribusch C. and Beran P., “Reliability-Based Design Optimization of Nonlinear Aeroelasticity Problems,” Journal of Aircraft, Vol. 47, No. 3, 2010, pp. 992–998. https://doi.org/10.2514/1.46665 LinkGoogle Scholar

  • [34] Lam R., Allaire D. L. and Willcox K., “Multifidelity Optimization Using Statistical Surrogate Modeling for Non-Hierarchical Information Sources,” 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2015-0143, Jan. 2015. https://doi.org/10.2514/6.2015-0143 LinkGoogle Scholar

  • [35] Poloczek M., Wang J. and Frazier P., “Multi-Information Source Optimization,” Advances in Neural Information Processing Systems 30, Curran Associates, Inc., Red Hook, NY, 2017, pp. 4291–4301. Google Scholar

  • [36] Rasmussen C. E. and Williams C. K. I., Gaussian Processes for Machine Learning, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, 2005. CrossrefGoogle Scholar

  • [37] Cover T. M. and Thomas J. A., Elements of Information Theory, Wiley Series in Telecommunications and Signal Processing, Wiley-Interscience, New York, 2006. Google Scholar

  • [38] Chevalier C., Bect J., Ginsbourger D., Vazquez E., Picheny V. and Richet Y., “Fast Parallel Kriging-Based Stepwise Uncertainty Reduction with Application to the Identification of an Excursion Set,” Technometrics, Vol. 56, No. 4, 2014, pp. 455–465. https://doi.org/10.1080/00401706.2013.860918 CrossrefGoogle Scholar

  • [39] Isogai K., “On the Transonic-Dip Mechanism of Flutter of a Sweptback Wing,” AIAA Journal, Vol. 17, No. 7, 1979, pp. 793–795. https://doi.org/10.2514/3.61226 LinkGoogle Scholar

  • [40] Alonso J. J. and Jameson A., “Fully-Implicit Time-Marching Aeroelastic Solutions,” 32nd Aerospace Sciences Meeting and Exhibit, AIAA Paper  1994-56, Aug. 1994. https://doi.org/10.2514/6.1994-56 LinkGoogle Scholar

  • [41] Bisplinghoff R. L., Ashley H. and Halfman R. L., Aeroelasticity, Dover, Mineola, NY, 1996. Google Scholar

  • [42] Dowell E. H., A Modern Course in Aeroelasticity, Kluwer Academic, Dordrecht, The Netherlands, 2014. https://doi.org/10.1007/1-4020-2106-2 Google Scholar

  • [43] Economon T. D., Palacios F., Copeland S. R., Lukaczyk T. W. and Alonso J. J., “SU2: An Open-Source Suite for Multiphysics Simulation and Design,” AIAA Journal, Vol. 54, No. 3, 2016, pp. 828–846. https://doi.org/10.2514/1.J053813 LinkGoogle Scholar

  • [44] Jacobson K. E., Kiviaho J. F., Kennedy G. J. and Smith M. J., “Evaluation of Time-Domain Damping Identification Methods for Flutter-Constrained Optimization,” Journal of Fluids and Structures, Vol. 87, May 2019, pp. 174–188. https://doi.org/10.1016/j.jfluidstructs.2019.03.011 CrossrefGoogle Scholar

  • [45] Hall K. C., Thomas J. P. and Dowell E. H., “Proper Orthogonal Decomposition Technique for Transonic Unsteady Aerodynamic Flows,” AIAA Journal, Vol. 38, No. 10, 2000, pp. 1853–1862. https://doi.org/10.2514/2.867 LinkGoogle Scholar

  • [46] Sanchez R., Kline H. L., Thomas D., Variyar A., Righi M., Economon T. D., Alonso J. J., Palacios R., Dimitriadis G. and Terrapon V., “Assessment of the Fluid-Structure Interaction Capabilities for Aeronautical Applications of the Open-Source Solver SU2,” VII European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2016), Inst. of Structural Analysis and Antiseismic Research, Athens, Greece, 2016. https://doi.org/10.7712/100016.1903.6597 Google Scholar

  • [47] Hassig H. J., “An Approximate True Damping Solution of the Flutter Equation by Determinant Iteration,” Journal of Aircraft, Vol. 8, No. 11, 1971, pp. 885–889. https://doi.org/10.2514/3.44311 LinkGoogle Scholar

  • [48] Johnson E. H. and Venkayya V. B., “Automated Structural Optimization System (ASTROS). Volume 1, Theoretical Manual,” Northrop Corp. Aircraft Div., AFWAL-TR-88-3028, Hawthorne, CA, 1988. Google Scholar

  • [49] Timme S., Marques S. and Badcock K. J., “Transonic Aeroelastic Stability Analysis Using a Kriging-Based Schur Complement Formulation,” AIAA Journal, Vol. 49, No. 6, 2011, pp. 1202–1213. https://doi.org/10.2514/1.J050975 LinkGoogle Scholar

  • [50] Burt D., Rasmussen C. E. and van der Wilk M., “Rates of Convergence for Sparse Variational Gaussian Process Regression,” Proceedings of the 36th International Conference on Machine Learning, edited by Chaudhuri K. and Salakhutdinov R., Vol. 97, Curran Associates, Inc., Red Hook, NY, 2019, pp. 862–871. Google Scholar